1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
2 years ago
6

Will give brainliest, thanks, and 5 stars! LOTS OF POINTS! 50 POINTS!

Mathematics
1 answer:
sweet-ann [11.9K]2 years ago
7 0

Answer/Step-by-step explanation:

 All of the solutions to the equation 3x^2 - 12 = 0 are x = 12 and x = -2

Answer: False

Explanation:

3x^2-12+12=0+12

3x^2=12

\frac{3x^2}{3}=\frac{12}{3}

x^2=4

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{4},\:x=-\sqrt{4}

x=2,\:x=-2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two unique solutions to the equations (x-3)^2 = 16

Note: Each variable in the matrix can have only one possible value, and this is how you know that this matrix has one unique solution.

Answer: True

Explanation:

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=7,\:x=-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ths solutions for the equation 2(x-3)^3 - 18 = 0 are x = 6 and x = 0

Answer: False

Explanation:

2\left(x-3\right)^3-18+18=0+18

2\left(x-3\right)^3=18

\frac{2\left(x-3\right)^3}{2}=\frac{18}{2}

\left(x-3\right)^3=9

\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}

=\sqrt[3]{9}+3,\:x=\frac{6-\sqrt[3]{9}}{2}+i\frac{\sqrt[3]{9}\sqrt{3}}{2},\:x=\frac{6-\sqrt[3]{9}}{2}-i\frac{\sqrt[3]{9}\sqrt{3}}{2}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~The solutions for the equation 2(x-5)^2-8=0 are x = 7 and x = -7

Answer: False

Explanation:

2\left(x-5\right)^2-8+8=0+8

2\left(x-5\right)^2=8

\frac{2\left(x-5\right)^2}{2}=\frac{8}{2}

\left(x-5\right)^2=4

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=7,\:x=3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation (x + 3)^2-25 = -8 are x = 2 and x = -8

Answer: False

Explanation:

\left(x+3\right)^2-25+25=-8+25

\left(x+3\right)^2=17

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{17}-3,\:x=-\sqrt{17}-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 2(2x-1)^2=18 are x = 5 and x = -4

Answer: False

Explanation:

\frac{2\left(2x-1\right)^2}{2}=\frac{18}{2}

\left(2x-1\right)^2=9

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=2,x=-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The only solution for equation (2x-1)^2-49=0 is x = 4

Answer: False
Explanation:

\left(2x-1\right)^2-49+49=0+49

\left(2x-1\right)^2=49

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=4,\:x=-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 3(x+2)^2 - 3 = 0 are x = -3 and x = -1

Answer: True
Explanation:

3\left(x+2\right)^2-3+3=0+3

3\left(x+2\right)^2=3

\frac{3\left(x+2\right)^2}{3}=\frac{3}{3}

\left(x+2\right)^2=1

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=-1,\:x=-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 5x^2 - 180 = 0 are x = 6 and x  = -6

Answer: True

Explanation:

5x^2-180+180=0+180

5x^2=180

\frac{5x^2}{5}=\frac{180}{5}

x^2=36

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{36},\:x=-\sqrt{36}

x=6,\:x=-6

<u><em>~Lenvy~</em></u>

You might be interested in
Find the exact value cos5pi/6
Lelechka [254]

Answer:

-  \frac{ \sqrt{3} }{2}

Step-by-step explanation:

Unit circle

5 0
3 years ago
Two lines intersect in more than one point.
statuscvo [17]
That would be false because parallel lines don't intersect. But i can if one is straight and the other is Curved
7 0
3 years ago
The sum of x and 25 is less than 75
Pavel [41]
I you're looking for the equation, it is 

x+25  \ \textless \  75

and If you need me to solve it, it is 

x \ \textless \  50
8 0
3 years ago
Which is the graph of the equation y-1=2/3(x-3)?
Ksivusya [100]

Answer:

The bottom graph is the graph of that equation

7 0
3 years ago
Read 2 more answers
Steve paid 10% tax on a purchase of $40. Select the dollar amount of the tax and the total dollar amount Steve paid.
marta [7]
Amount of purchase that Steve made = $40
Percentage of tax that Steve needs to pay = 10%
Then
Amount of tax that Steve needs to pay for the purchase = (10/100) * 40
                                                                                          = 1 * 4 dollars
                                                                                          = 4 dollars
Then
The total amount including tax
that Steve needs to pay for the purchase = (40 + 4) dollars
                                                                   = 44 dollars
So the dollar amount of tax that Steve had to pay is $4 and the total amount that Steve had to pay was $44.

4 0
3 years ago
Other questions:
  • Find the number of positive three-digit even integers whose digits are among 9, 8, 7, 5, 3, and 1.
    9·2 answers
  • In the coronet plane, what is the length of the line segment that connects points at (5, 4) and (-3, -1)? Enter your answer in t
    5·1 answer
  • A light bulb consumes 13200 watt-hours in 5 days and 12 hours. how many watt-hours does it consume per day?
    14·1 answer
  • Elena bought 8 tokens for $4.40. At this rate how many tokens could she buy with $6.05
    8·1 answer
  • Nine more than the quotient of a number and 4 is 2
    13·1 answer
  • Mai ran 1/4 of the length of her road, which is 9 miles long. How long did Mai run?
    5·1 answer
  • The price of a toy usually costing £50 is increases to £65<br> work out the percentage increase
    9·2 answers
  • Maths Aryabhatta
    10·2 answers
  • 8th grade math help!!
    14·1 answer
  • So I need help trying to answer these triangle problems. I don't know how to find the measure of an angle
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!