1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
2 years ago
6

Will give brainliest, thanks, and 5 stars! LOTS OF POINTS! 50 POINTS!

Mathematics
1 answer:
sweet-ann [11.9K]2 years ago
7 0

Answer/Step-by-step explanation:

 All of the solutions to the equation 3x^2 - 12 = 0 are x = 12 and x = -2

Answer: False

Explanation:

3x^2-12+12=0+12

3x^2=12

\frac{3x^2}{3}=\frac{12}{3}

x^2=4

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{4},\:x=-\sqrt{4}

x=2,\:x=-2

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

There are two unique solutions to the equations (x-3)^2 = 16

Note: Each variable in the matrix can have only one possible value, and this is how you know that this matrix has one unique solution.

Answer: True

Explanation:

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=7,\:x=-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Ths solutions for the equation 2(x-3)^3 - 18 = 0 are x = 6 and x = 0

Answer: False

Explanation:

2\left(x-3\right)^3-18+18=0+18

2\left(x-3\right)^3=18

\frac{2\left(x-3\right)^3}{2}=\frac{18}{2}

\left(x-3\right)^3=9

\mathrm{For\:}g^3\left(x\right)=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt[3]{f\left(a\right)},\:\sqrt[3]{f\left(a\right)}\frac{-1-\sqrt{3}i}{2},\:\sqrt[3]{f\left(a\right)}\frac{-1+\sqrt{3}i}{2}

=\sqrt[3]{9}+3,\:x=\frac{6-\sqrt[3]{9}}{2}+i\frac{\sqrt[3]{9}\sqrt{3}}{2},\:x=\frac{6-\sqrt[3]{9}}{2}-i\frac{\sqrt[3]{9}\sqrt{3}}{2}

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~The solutions for the equation 2(x-5)^2-8=0 are x = 7 and x = -7

Answer: False

Explanation:

2\left(x-5\right)^2-8+8=0+8

2\left(x-5\right)^2=8

\frac{2\left(x-5\right)^2}{2}=\frac{8}{2}

\left(x-5\right)^2=4

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=7,\:x=3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation (x + 3)^2-25 = -8 are x = 2 and x = -8

Answer: False

Explanation:

\left(x+3\right)^2-25+25=-8+25

\left(x+3\right)^2=17

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{17}-3,\:x=-\sqrt{17}-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 2(2x-1)^2=18 are x = 5 and x = -4

Answer: False

Explanation:

\frac{2\left(2x-1\right)^2}{2}=\frac{18}{2}

\left(2x-1\right)^2=9

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=2,x=-1

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The only solution for equation (2x-1)^2-49=0 is x = 4

Answer: False
Explanation:

\left(2x-1\right)^2-49+49=0+49

\left(2x-1\right)^2=49

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=4,\:x=-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 3(x+2)^2 - 3 = 0 are x = -3 and x = -1

Answer: True
Explanation:

3\left(x+2\right)^2-3+3=0+3

3\left(x+2\right)^2=3

\frac{3\left(x+2\right)^2}{3}=\frac{3}{3}

\left(x+2\right)^2=1

\mathrm{For\:}\left(g\left(x\right)\right)^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}g\left(x\right)=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=-1,\:x=-3

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

The solutions for the equation 5x^2 - 180 = 0 are x = 6 and x  = -6

Answer: True

Explanation:

5x^2-180+180=0+180

5x^2=180

\frac{5x^2}{5}=\frac{180}{5}

x^2=36

\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=\sqrt{f\left(a\right)},\:\:-\sqrt{f\left(a\right)}

x=\sqrt{36},\:x=-\sqrt{36}

x=6,\:x=-6

<u><em>~Lenvy~</em></u>

You might be interested in
HURRY ITS TIMED
LenaWriter [7]

Answer: I'm pretty sure this is a direct relationship

7 0
3 years ago
Which expression is a difference of two terms that is equivalent to 6z - 13
Ivan

Answer:7 that’s easy

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Write an equation using “” and then solve the equation. The late fee for each day is $2. A patron paid $72 for books that are ov
topjm [15]
Pretty simple equation, where we need to find the number of books. If it is 2$ each day per book
72/9 = 8$ per day is the late fee paid
So if each book is 2$, then we can assume
8/2 = 4 books

So equation is
“# books = (amount paid)/(days * per day payment)”
4 0
2 years ago
Geometry please help if you can​
erik [133]

Area \:  of \:  sundial:3.14 \times  \frac{ {8}^{2} }{4}  = 3.14 \times 16 = 50.24 \:  {ft}^{2}  \\ Area \: of \: one \: section: \frac{50.24}{8}  = 6.28 \:  {ft}^{2}

6 0
3 years ago
Mrs shirman has a bulletin that is 6 feet and 5 feet wide. She has 32 feet of border to go around the edges of the board. Does s
ioda
Yes because the perimeter of the bulletin is 23 feet. this is because to find perimeter you use 2(L)+2(W).
8 0
3 years ago
Other questions:
  • Alejandro has 64-centimeter cubes. He uses them to build cubes with
    10·1 answer
  • solve the formula for calculating the perimeter of a parallelogram with sides b and c for c p = 2b+2c
    12·2 answers
  • Can someone explain what the prime factorization is like my teacher calls it a factor tree can u plz help me ???
    10·1 answer
  • Is 1 3/5 1.9 equal to or less than or greater than
    11·2 answers
  • What is 3 1/4 - 2 1/2
    8·1 answer
  • 2) (a^3-2a)-(3a^2-4a^3
    14·1 answer
  • shows that the points (2,1), (6,2), (5,6), and (1,5) are the vertices of a square. Then obtain the perimeter and area of ​​that
    12·1 answer
  • Put in ascending order <br><br>1.2, 0.2 ,1.22, 0.12, 0.002<br>​
    15·1 answer
  • 100 POINTS!
    8·1 answer
  • Help! complete the table with the missing measurements. the perimeter is 40ft is that helps
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!