To solve this problem and calculate the security's equilibrium rate of return, you should sum<span> the security's default risk premium (2.00%),</span> the inflation risk premium (1.75%), the real risk-free rate (3.50%), the security's liquidity risk<span> premium (0.25%) </span><span>and the maturity risk premium (0.85%). So, you have:
ij*=2.00%+1.75%+3.50%+0.25%+0.85%
</span> ij*=8.35%<span>
</span>
Answer:
4
Step-by-step explanation:
the correct answer is number 4
if X = 2 ==> 2x -5 = 2(2) -5 = 4 - 5 = -1
Step-by-step explanation:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ)
Multiply by the reciprocal:
(1 + cos θ + sin θ) / (1 + cos θ − sin θ) × (1 + cos θ + sin θ) / (1 + cos θ + sin θ)
(1 + cos θ + sin θ)² / [ (1 + cos θ − sin θ) (1 + cos θ + sin θ) ]
(1 + cos θ + sin θ)² / [ (1 + cos θ)² − sin² θ) ]
Distribute and simplify:
(1 + cos θ + sin θ)² / (1 + 2 cos θ + cos² θ − sin² θ)
[ 1 + 2 (cos θ + sin θ) + (cos θ + sin θ)² ] / (1 + 2 cos θ + cos² θ − sin² θ)
(1 + 2 cos θ + 2 sin θ + cos² θ + 2 sin θ cos θ + sin² θ) / (1 + 2 cos θ + cos² θ − sin² θ)
Use Pythagorean identity:
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (sin² θ + cos² θ + 2 cos θ + cos² θ − sin² θ)
(2 + 2 cos θ + 2 sin θ + 2 sin θ cos θ) / (2 cos² θ + 2 cos θ)
(1 + cos θ + sin θ + sin θ cos θ) / (cos² θ + cos θ)
Factor:
(1 + cos θ + sin θ (1 + cos θ)) / (cos θ (1 + cos θ))
(1 + cos θ)(1 + sin θ) / (cos θ (1 + cos θ))
(1 + sin θ) / cos θ
Answer:
35.4%
Step-by-step explanation:
(100/80) x 27.6
basically 1 of 80 is 1.25 and multiply 1.25 times the money jaylon spent sorry i am really bad at explaining only good at solving
Answer:
1
Step-by-step explanation:
Using the trigonometric identities
tan(90 - x) = cotx , cotx = 
Given
tan1tan2tan3....................... tan87tan88tan89
= tan1tan2tan3............... tan(90-3)tan(90-2)(tan90 - 1)
= tan1tan2tan3.............. cot3cot2cot1
= tan1cot1tan2cot2tan3cot3 ........................
= 1 × 1 × 1 ×....................... × 1
= 1