An object that absorbs all radiation falling on it, at all wavelengths, is called a black body. When a black body is at a uniform temperature, its emission has a characteristic frequency distribution that depends on the temperature. Its emission is called black-body radiation
hope it helps
Answer:
Ax = 0
Ay = 6 m
Bx = 8 cos phi = cos 34 = 6.63 m
By = 8 sin phi = 8 sin (-34) = -4.47 m
Rx = Ax + Bx = 0 + 6.63 = 6.63 m
Ry = Ay + By = 6 - 4.47 = 1.53 m
R = (6.63^2 + 1.53^2)^1/2 = 6.80 m
tan theta = Ry / Rx = 1.53 / 6.8 = ,225
theta = 12.7 deg
Answer:
Net displacement = 0
Distance traveled = 2PQ <_up and down
Explanation:
Answer:

Explanation:
<u>Density
</u>
The density of a substance is the mass per unit volume. The density varies with temperature and pressure.
The formula to calculate the density of a substance of mass (m) and volume (V) is:

We have a cube-shaped piece of copper of 4 cm of side length. The volume of the piece is:

Surprisingly, no other magnitude is required, thus the answer is:

Answer:
(a) W= 44N
(b)W= 31.65 N
Explanation:
Data
T=44 N : Maximum force that the rope can withstand without breaking
Newton's second law:
∑F = m*a Formula (1)
∑F : algebraic sum of the forces in Newton (N)
m : mass in kilograms (kg)
a : acceleration in meters over second square (m/s²)
(a) We apply the formula (1) at constant speed , then, a=0
W: heaviest fish that can be pulled up vertically
∑F = 0
T-W =0
W = T
W= 44N
(b) We apply the formula (1) , a= 1.26 m/s²
W: heaviest fish that can be pulled up vertically
W= m*g
m= W/g
g= 9.8 m/s² : acceleration due to gravity
∑F = 0
T-W = m*a
T= W+(W/g)*a
44=W*(1+1/9.8)* (1.26 )
44= W* 1.39
W= 44/1.39
W= 31.65 N