Answer:
a)
b)
Explanation:
<u>Given:</u>
a) when the initial velocity of the projectile is 0.520 times the escape velocity from the earth.
Let r be the radial distance from the earth's surface Let M be the mass of the Earth and R be the radius of the Earth
Now using conservation of Energy at earths surface and at distance r we have

b) when the Initial kinetic Energy of the projectile is 0.52 times the Kinetic Energy required to escape the Earth
Conservation of Energy we have

Answer:
The velocity of the pin is opposite its acceleration on the way up.
(d) option is correct.
Explanation:
when the juggler throws a bowling pin straight in the air, the acceleration working on the pin is in the downward direction due to the gravitational force of the earth.
According to Newton's Universal Law of Gravitation
''The gravitational force is a force that attracts any objects with mass''
My best hobby is driving. Driving has something to do with Newton's first law of motion, which states that an object will continue to be in its state of rest or in uniform motion in a straight line unless it is acted upon by an external force. This law means that an object will continue to be in motion in the same direction unless it is acted upon by a force. Newton's first law of motion is also called the law of inertia.
I usually experience the law of inertia when I am driving my car.
Every morning, for me to move the car from its state of rest to a state of uniform motion, I have to switch on the ignition, which represent an unbalanced force that move the car out of its states of rest. When I am driving, the car continue in motion and in the same direction, unless I apply the brake. The application of the brake is an example of applying an unbalanced force to stop a body in motion.
Answer:

Explanation:
Mass of Earth, 
Mass of Moon, 
The distance between Earth and the Moon is, 
We need to find the force of gravitational attraction between the Earth and the moon. The force of gravity is given by :

So, the required force is
.