It will sink because it is heavier. The density of water 1.00 g/ml
Answer:
Explained below
Explanation:
Generally speaking, we know in physics that Electric field lines are lines which usually start at positive charges and deflect away from them to terminate at the negative charges. Meanwhile Equipotential lines are lines that are used to connect points located on the same electric potential.
Finally, in conclusion, electric field lines are usually lines that go through in a perpendicular manner across every equipotential lines.
The wires that will have the least resistance is :
C. A short thick wire
in order to get the least resistence, you need the wire to be the lowest in length and the highest in Area
hope this helps
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Answer:
1660 V
Explanation:
Resistance should be determined and then voltage drop across the power line can be determined.
R = ρ L /A
Here ρ = Resistivity of aluminum = 
L = length = 32 km = 32,000 m
Area of cross section = A = π r² = π (0.027/2)² = 0.00057255 m²
Resistance = R =
(
(32,000)/(0.00057255) = 1.5090 Ohms.
Voltage drop = V = I R = (1100)(1.5090) = 1659.9 V.
(If resistivity value is different, then the resistance will be different and hence final answer for voltage will also vary ).