1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elza [17]
2 years ago
11

Matter can undergo chemical reactions and nuclear reactions. Which

Physics
1 answer:
NeX [460]2 years ago
6 0

Answer:

<em>D.) state of matter</em>

Explanation:

it can undergo chemical but not nuclear.

You might be interested in
A force of 1.35 newtons is required to accelerate a book by 1.5 meters/second2 along a frictionless surface. What is the mass of
malfutka [58]

B. seems like the answer, I'm not sure.

3 0
4 years ago
Read 2 more answers
A toy car is placed at 0 on a number line. It moves 9 cm to the left, then 4 cm to the right, and then 6 cm to the len
MA_775_DIABLO [31]

Answer:19 cm

Explanation:

6 0
3 years ago
Read 2 more answers
If no heat is lost to the surroundings, how much heat must be added to raise the temperature from 20.0 ∘C to 85.0 ∘C ?
andrey2020 [161]

Answer:

Explanation:

C_{water} = 4190 J/kg.K

C_{Al} = 910 J/Kg. K

m_{Al} = 1.50 kg

m_{water} = 1.80 kg

Q_{added} = Q_{Al} + Q_{water}

=m_{Al} C_{Al}ΔT + m_{water} C_{water}ΔT

= (1.50)(910)(85.0-20)+(1.80)(4190)(85.0-20)

= 578,955 J

= 579 kJ

3 0
4 years ago
An iron wire has a cross-sectional area equal to 5.00×10⁻⁶ m² . Carry out the following steps to determine the drift speed of th
Doss [256]
  1. In mass, there are 55.85 × 10⁻³ kg/mol in in 1 mole of iron.
  2. The molar density of iron is equal to 1.41 × 10⁵ mol/m³.
  3. The density of iron atoms is equal to 8.49 × 10²⁸ atoms/m³.
  4. The number density of conduction electrons is equal to 1.70 × 10²⁹ conduction electrons/m³.
  5. The drift speed of conduction electrons is equal to 2.21 × 10⁻⁴ m/s.

<h3>How to calculate the drift speed of the conduction electrons?</h3>

Mathematically, the drift speed of the conduction electrons can be calculated by using this formula:

V = (m × σ × V)/ρ × e × f × l)

V = I/(n × A × Q)

Where:

  • U represents the drift speed of the conduction electrons, in m/s.
  • m represents the molecular mass of the metal, in kg.
  • e represents the elementary charge, in C.
  • f represents the number of free electrons per atom.
  • σ represents the electric conductivity of the medium at a particular temperature in S/m.
  • ρ represents the density of the conductor, in kg/m³.
  • ℓ represents the length of the conductor, in m.
  • ΔV represents the voltage applied or potential difference across the conductor in V.

<h3>How many kilograms are there in 1 mole of iron? </h3>

Molar mass of iron = 55.85 g/mol.

In Kilograms, we have:

Mass = 55.85 × 1/1000

Mass = 55.85 × 10⁻³ kg/mol.

For the molar density of iron, we have:

Molar density = density/molar mass

Molar density = 7874/0.056

Molar density = 1.41 × 10⁵ mol/m³.

For the density of iron atoms, we have:

Density of iron atoms = Avogadro's constant × molar density

Density of iron atoms = 6.023 × 10²³ × 1.406 × 10⁵

Density of iron atoms = 8.49 × 10²⁸ atoms/m³.

For the number density of conduction electrons, we have:

Fe ---> Fe²⁺ + 2e⁻

Number density of conduction electrons = 2 conduction electrons/1 atom of iron

Number density of conduction electrons = 2 × 8.49 × 10²⁸

Number density of conduction electrons = 1.70 × 10²⁹ conduction electrons/m³.

For the drift speed of conduction electrons, we have:

V = I/(n × A × Q)

V = 30/(1.70 × 10²⁹ × 1.602 × 10⁻¹⁹ × 5 × 10⁻⁶)

Drift speed, V = 2.21 × 10⁻⁴ m/s.

Read more on drift speed here: brainly.com/question/15219891

#SPJ4

Complete Question:

An iron wire has a cross-sectional area of 5.00 x 10-6 m2. Carry out steps (a) through (e) to compute the drift speed of the conduction electrons in the wire.

(a) How many kilograms are there in 1 mole of iron?

(b) Starting with the density of iron and the result of part (a), compute the molar density of iron (the number of moles of iron per cubic meter).

(c) Calculate the number density of iron atoms using Avogadro’s number.

(d) Obtain the number density of conduction electrons given that there are two conduction electrons per iron atom.

(e) If the wire carries a current of 30.0 A, calculate the drift speed of conduction electrons.

4 0
2 years ago
State one advantage and one disadvantage of using a plane mirrior as a driving mirrior​
____ [38]

1). one disadvantage as using it is because it covers far less space. this would make much more blind spots. 2. the advantage of them is that they don't lie about the distances. the current convex mirrors we have in out cars right now, is that the imagine might look father or closer than they appear, which can be troubling at times.

plan mirrors are flat, car mirrors are convex.

4 0
3 years ago
Other questions:
  • Two identical cars collide head on. Each car is traveling at 100 km/h. The impact force on each car is the same as hitting a sol
    13·1 answer
  • NEED HELP ASAP Carlos is analyzing the results of a recent scientific study about gravity. Scientists recorded that the experime
    13·1 answer
  • If different groups of scientist have access to the same data, how can they draw different conclusions?
    5·1 answer
  • How much work is done when a 48-kg stack of books are lifted 2m with a net force of 25 N ?
    7·1 answer
  • Two bicycle tires are set rolling with the same initial speed of 3.30 m/s along a long, straight road, and the distance each tra
    12·1 answer
  • Calculate the wavelength in centimeters of radar energy at a frequency of 10 GHz. What is the frequency in gigahertz of radar en
    15·1 answer
  • On his honeymoon, James Joule attempted to explore the relationships between various forms of energy by measuring the rise of te
    12·1 answer
  • A person in a factory has to lift a box on to a shelf.
    5·1 answer
  • A 2. 0 μf and a 4. 0 μf capacitor are connected in series across an 8. 0-v dc source. what is the charge on the 2. 0 μf capacito
    5·1 answer
  • Compare green and orange light from the visible spectrum. You are currently in a labeling module. Turn off browse mode or quick
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!