If it's not moving at all at the beginning of the 10 seconds, then it falls 490 meters straight down in 10 seconds.
(Note: This is true of all objects on Earth . . . rubber balls, feathers, grains of sand, school buses, battle ships . . . everything. As long as air doesn't hold them back. Anything falling from rest falls 490 meters in the first 10 seconds.)
The amount of heat in the body in joule
Answer:
In an atomizer, or perfume sprayer, you squeeze a rubber bulb to squirt air through a tube. Because of the Bernoulli principle, the air rushing through the tube has a lower pressure than the surrounding atmosphere. ... The perfume is pushed out of the tube and sprays into the air as a fine mist.
Explanation:
The part B of the question is missing and it is;
b) What is the height between the two window ledges?
Answer:
A) 20.76 m/s
B) 161.52 m
Explanation:
A) To calculate the initial speed we use the formula from Newton's first law of motion:
v = u + at
Making u the subject gives;
u = v - at
Where;
v is the final velocity which is the speed when Jill sees the pot = 60 m/s
u is the initial velocity which is the speed when Jack sees the pot go by
t is the time between the two observed events = 4 s
a in this question is acceleration due to gravity = 9.81 m/s².
Plugging in the relevant values into the initial velocity equation gives;
u = 60 - (9.81 × 4)
u = 20.76 m/s
B) To get the height difference, we will use the formula;
(y1 - y0) = ut + ½at²
Thus, plugging in the relevant values, we have;
y1 - y0 = (20.76 × 4) + (½ × 9.81 × 4²)
(y1 - y0) = 161.52 m
Answer:
Let lo be the length of the rod in the frame in which it is at rest and s' is the frame which is moving with a speed 0.8c in a direction making an angle 60° with x-axis. The components of lo along and perpendicular to the direction of motion are lo cos 60° and lo sin 60° respectively.
Now length of the rod along the direction of motion
= lo cos 60°_/1-(0.8) 2/c2
= lo/2×0.6
= 0.3 lo.
Length of the rod perpendicular to the direction of motion.
= lo sin 60°
=_/3/2 lo
Length of moving rod
l = [(0.3lo)2+{lo_/3/2} 2] 1/2
= 0.916 lo.
Percentage contraction
= lo-0.916lo/lo×100
= 8.4%.
Explanation:
<h2><u><em>
Brainliest?</em></u></h2>