Zinc (Zn) always has a +2 charge. It is one of the exceptions.
This uses something called <span>Le Chatelier's principle. It states essentially that any stress put upon a system will be corrected.
In more simple terms, it means that in an equilibrium, such as the equation N2(g) + 3H2(g) <=> 2NH3(g), removing a reactant will cause the system to create more of said reactant to compensate for its loss, or adding excess reactant will cause the system to remove some of the added reactant. For future reference, the same principle applies to products in an equilibrium as well.
In this case, hydrogen gas is a reactant, and hydrogen is being removed. According to </span><span>Le Chatelier's principle, the system will shift to create more hydrogen gas. In essence, it will shift in the direction of the hydrogen gas, so there will be a shift toward the reactants.
To clear something up, Keq will not change, as it is a constant value with constant conditions (such as temperature, pressure, etc.).</span>
Answer
the first one (im pretty sure)
Explanation:
Answer:
The number of carbon atoms in the container is 1.806 × 10²⁴ or the container contains 1.806 × 10²⁴ atoms of carbon
Explanation:
By Avogadro's number, 1 mole of a substance contains 6.02 × 10²³ particles of the substance
Here we have 0.45 mole of CO₂ contains
0.45 × 6.02 × 10²³ particles of CO₂ that is 2.709 × 10²³ particles of CO₂ or equivalent to 2.709 × 10²³ atoms of Carbon
Similarly, 2.55 moles of CaC₂ contains 2.55 × 6.02 × 10²³ particles of CaC₂ or 1.5351 × 10²⁴ atoms of Carbon
The total number of carbon atoms is therefore;
2.709 × 10²³ + 1.5351 × 10²⁴ = 1.806 × 10²⁴ atoms of carbon.
Answer:
2 moles of KCl will be produced
Explanation:
Given parameters:
Number of moles of K = 2 moles
Unknown:
Number of moles of KCl produced = ?
Solution:
To solve this problem;
Obtain a balanced chemical equation:
2K + Cl₂ → 2KCl ;
Since K is the limiting reactant, its amount will determine the extent of this reaction.
From the balanced equation;
2 moles of K will produce 2 moles of KCl
Given that 2 moles of K reacted, 2 moles of KCl will be produced