Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
Answer: Thus concentration of in is 0.011 and in is 0.814
Explanation:
To calculate the concentration of , we use the equation given by neutralization reaction:
where,
are the n-factor, molarity and volume of acid which is
are the n-factor, molarity and volume of base which is
We are given:
Putting values in above equation, we get:
The concentration in is
Thus concentration of is and
Answer:
well physical weathering is the process of a element or acts of water rock or other items that take its toll on items
Explanation:
so i would,WITH CONFIDENCE C.
I’m pretty sure it’s A or C
Answer:
This is a chemical change because it has been lit on fire. When it is lit on fire, the fire has been made, heat has been made, and gasses produced from the fire have also been made. Because this introduces new matter to the pictures, it is a chemical reaction.
Explanation: