Part a)
As we know that energy stored inside the capacitor is given as

for a given capacitor we know

Now we can use it in above equation to find the energy



PART b)
If two negative charges are hold near to each other and then released
Then due to mutual repulsion they start moving away from each other
Due to mutual repulsion as the two charges moving away the electrostatic potential energy of two charges will convert into kinetic energy of the two charges.
So here as they move apart kinetic energy will increase while potential energy will decrease
Part c)
As we know that capacitance is given as

here we know that




Answer:
d = 5.75m
Explanation:
Using snell's law, we have,
n₁ × sin(i) = n₂ × 2 × sin(r)
n1= refractive index of 1st medium= 1
n2= refractive index of 2nd medium = 1.33
r= angle of reflection
therefore,

Here,
i = 90 - θ





Therefore, the distance is
d = 3 + d₁
d = 3 + 2.75
d = 5.75m
The major shortcoming of Rutherford's model was that it was incomplete. It did not explain how the atom's negatively charged electrons are distrubuted in the space surronding its positively charged nucleus. A form of energy that exhibits wavelike behavior as it travels through space
I think these gases are water vapor and nitrogen. As the temperature rises, these water vapor molecules, would condense and form the oceans we have. Also, it was said that in the early atmosphere, nitrogen is very abundant and even today the composition of air is 79% by volume.
Answer:
1) 50 facing towards the right
2) 150 facing right
3) 200 facing right
4) 0- no direction
5) 50- facing left
6) 50 facing right
Explanation:
forces in opposite directions and equal magnitudes counteract each other. in number 2 they face the same direction so they would just be added. in number 4 they oppose each other so would be subtracted