Answer:
P= 454.11 N
Explanation:
Since P is the only horizontal force acting on the system, it can be defined as the product of the acceleration by the total mass of the system (both cubes).

The friction force between both cubes (F) is defined as the normal force acting on the smaller cube multiplied by the coefficient of static friction. Since both cubes are subject to the same acceleration:

In order for the small cube to not slide down, the friction force must equal the weight of the small cube:

The smallest magnitude that P can have in order to keep the small cube from sliding downward is 454.11 N
The force exerted on the board by the karate master given the data is -4500 N
<h3>Data obtained from the question </h3>
- Initial velocity (u) = 10 m/s
- Final velocity (v) = 1 m/s
- Time (t) = 0.002 s
- Mass (m) = 1 Kg
- Force (F) = ?
<h3>How to determine the force</h3>
The force exerted can be obtained as illustrated below:
F = m(v - u) / t
F = 1 (1 - 10) / 0.002
F = (1 × -9) / 0.002
F = -4500 N
Learn more about momentum:
brainly.com/question/250648
#SPJ1
Answer:
A) 89.39 J
B) 30.39J
C) 23.8 J
Explanation:
We are given;
F = 30.2N
m = 3.5 kg
μ_k = 0.646
d = 2.96m
ΔEth (Block) = 35.2J
A) Work done by the applied force on the block-floor system is given as;
W = F•d
Thus, W = 30.2 x 2.96 = 89.39 J
B) Total thermal energy dissipated by the whole system which includes the floor and the block is given as;
ΔEth = μ_k•mgd
Thus, ΔEth = 0.646 x 3.5 x 9.8 x 2.96 = 65.59J
Now, we are given the thermal energy of the block which is ΔEth (Block) = 35.2J.
Thus,
ΔEth = ΔEth (Block) + ΔEth (floor)
Thus,
ΔEth (floor) = ΔEth - ΔEth (Block)
ΔEth (floor) = 65.59J - 35.2J = 30.39J
C) The total work done is considered as the sum of the thermal energy dissipated as heat and the kinetic energy of the block. Thus;
W = K + ΔEth
Therefore;
K = W - ΔEth
K = 89.39 - 65.59 = 23.8J
Complete question:
The coordinate of a particle in meters is given by x(t)=1 6t- 3.0t³ , where the time tis in seconds. The
particle is momentarily at rest at t is:
Select one:
a. 9.3s
b. 1.3s
C. 0.75s
d.5.3s
e. 7.3s
Answer:
b. 1.3 s
Explanation:
Given;
position of the particle, x(t)=1 6t- 3.0t³
when the particle is at rest, the velocity is zero.
velocity = dx/dt
dx /dt = 16 - 9t²
16 - 9t² = 0
9t² = 16
t² = 16 /9
t = √(16 / 9)
t = 4/3
t = 1.3 s
Therefore, the particle is momentarily at rest at t = 1.3 s
Answer:
lives, forces and motion make things move and stay still. Pushing and pulling are examples of forces that can sped things up or slow things down. There are two types of forces, at a distance force and contact forces..