Answer:
CO2
Explanation:
CO2 or carbon dioxide is produced when iron is extracted from its ore. Carbon monoxide Co is used as reducing agent in iron extraction. In this reaction iron ore is reduced to iron and CO is oxidized to CO2 or carbon dioxide which is released in the process. There extraction of iron is redox reaction.
From the stoichiometry of the combustion reaction, we can see that 7.4 L of oxygen is consumed.
<h3>What is combustion?</h3>
Combustion is a reaction in which a substance is burnt in oxygen. The equation of the reaction is; C4H10O(l) + 6O2 (g) → 4CO2 (g) + 5H2O(l)
We can obtain the number of moles of CO2 from;
PV = nRT
n = 1.02 atm * 7.15 L/0.082 atm LK-1mol-1 * (125 + 273) K
n = 7.29 /32.6
n = 0.22 moles
If 6 moles of oxygen produces 4 moles of CO2
x moles of oxygen produces 0.22 moles of CO2
x = 0.33 moles
1 mole of oxygen occupies 22.4 L
0.33 moles of oxygen occupies 0.33 moles * 22.4 L/ 1 mole
= 7.4 L of oxygen
Learn more about stoichiometry: brainly.com/question/13110055
#SPJ1
Be= Beryllium= weight 9.01
Cl= Chlorine= weight 35.45
Since there are 2 Chlorine, you have to add Chlorine twice.
9.01 + 35.45 + 35.45= 79.91
Answer: 79.91
(This answer does not include sig.figs)
Answer:
The rate of acceleration is 5.
Explanation:
In order to calculate acceleration we need to divide the force by the mass.
Acceleration = net force/mass
In this case, it would be 20/4. Simplify that and we get 5.
B. 3.0 mol·L⁻¹ NaCl
Explanation:
Freezing point is a colligative property: it depends only on the number of particles in solution.
The for freezing point depression ΔT_f is
ΔT_f = iK_fb
where
i = the number of moles of particles available from one mole of solute
K_f = the molal freezing point depression constant
b = the molal concentration of the solute
All your solutions are aqueous NaCl. They differ only in their concentrations.
Thus, the most concentrated solution will have the greatest freezing point depression and the lowest freezing point.
Read more on Brainly.com - brainly.com/question/11516173#readmore