Answer:
Present in both catabolic and anabolic pathways
Explanation:
Glyceraldehyde-3-phosphate abbreviated as G3P occurs as intermediate in glycolysis and gluconeogenesis.
In photosynthesis, it is produced by the light independent reaction and acts as carrier for returning ADP, phosphate ions Pi, and NADP+ to the light independent pathway. Photosynthesis is a anbolic pathway.
In glycolysis, Glyceraldehyde-3-phosphate is produced by breakdown of fructose-1,6 -bisphosphate. Further Glyceraldehyde-3-phosphate converted to pyruvate and pyruvate is further used in citric acid cycle for energy production. Therefore, it is used in catabolic pathway too.
Glyceraldehyde-3-phosphate is an important intermediate molecule in the cell's metabolic pathways because it is present in both catabolic and anabolic pathways.
Answer:
In the presence of a base, blue litmus paper will turn red........
Fluorite is harder than gypsum but softer than apatite. Thus, the correct option is B.
<h3>What is the hardness of any element?</h3>
The hardness of any element may be defined as the capability of a material to oppose the process of deformation and remains in actual shape precisely.
According to the table of hardness scales by Mohs, the increasing order of given hardness of given elements is as follows:
Gypsum < Fluorite < Apatite.
Therefore, Fluorite is harder than gypsum but softer than apatite. Thus, the correct option is B.
To learn more about the Hardness of elements, refer to the link:
brainly.com/question/23721736
#SPJ1
A carbonated soft drink hs a large amount of water dissolved with ample amount of carbon dioxide. In this case, the solvent is water and carbon dioxide is the solute. In 2, for the reaction <span>CH3COOH = CH3COO + H+, CH3COOH is a Bronsted-Lowry acid because it releases a proton which is H+. </span>
Answer:
C) sp2 and sp2
Explanation:
The hybridization depens on the ammount and type of bonds the atom analized has in the molecule.
For example:
- A C atom bonded to 4 H atoms has a sp3 hybridization.
- A C atom bonded to 2 H atoms and to 1 C with a double bond (like in ethene) has a sp2 hybridization
- A C bonded to 1 H and 1 C with a triple bond (like in ethyne) has a sp hybridization.
Analyzing the type and amount of unions of the nitrogen and the carbonyl you will be able to determine the hybridization.
In the imine, the N atom has a double bond to a C and a simple bond two other C, plus the lone pair of electrons (counts as a bond) so it will have a sp2 hybridization.
In the carbonyl, the C has two simple bonds to other C and a double bond to an oxygen atom. It will also have a sp2 hybridization