Answer:
24 N
Explanation:
= mass of the cube = 
Consider the three cubes together as one.
= mass of the three cubes together = 
= acceleration of the combination = 2 ms⁻²
= Force applied on the combination
Using Newton's second law

= Force by the left cube on the middle cube
Consider the forces acting on left cube, from the force diagram, we have

Answer:
271.862 N/m
Explanation:
From Hook's Law,
mgh = 1/2ke²............... Equation 1
Where
m = mass of the ball, g = acceleration due to gravity, k = spring constant, e = extension, h = height fro which the ball was dropped.
Making k the subject of the equation,
k =2mgh/k²....................... Equation 2
Note: The potential energy of the ball is equal to the elastic potential energy of the spring.
Given: m = 60.3 g = 0.0603 kg, g = 9.8 m/s², e = 4.68317 cm = 0.0468317 m, h = 53.7 cm = 0.537 m
Substitute into equation 2
k = 2(0.0603)(9.8)(0.537)/0.048317²
k = 0.6346696/0.0023345
k = 271.862 N/m
Answer:
Reflective
Explanation:
The radiation pressure of the wave that totally absorbed is given by;

and While the radiation pressure of the wave totally reflected is given by;

Now compare the two-equation you can clearly see that the pressure due to reflection is larger than absorption therefore the sail should be reflective.
Question: What is the frequency of a wave that has a wave speed of 120 m/s and a wavelength of 0.40 m?
Answer: The equation that relates frequency of a wave to a waves speed and wavelength is Speed of Wave= Frequency X Wavelength. Since you are given speed and wavelength, you plug those two known numbers into the equation, 120= Frequency X 0.40. You then divide 120 by .4 to get your frequency of 300.
Explanation: this might help for