1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
diamong [38]
3 years ago
11

Your cousin Jannik skis down a blue square ski slope, with an initial speed of 3.6 m/s. He travels 15 m down the mountain side b

efore coming to a flat landing. Jannik estimates the blue skislope has a 40 percent grade, or 18◦ incline above the horizontal and that he and his skis have a total mass of 58.0 kg. Suppose that the hillside is not frictionless, so that Jannik’s speed at the bottom of the slope is 7.8 m/s. What is the energy lost due to friction when Jannik reaches the flat landing? Justify your response.
Physics
1 answer:
fenix001 [56]3 years ago
8 0

Answer: The loss of energy due to friction is equal to 1,253 J.

Explanation:

The problem tells us that the skier has an initial speed of 3.6 m/s, which means that his initial kinetic energy is as follows:

K₁ = 1/2 m v₁² = 1/2 . 58.0 Kg. (3.6)² (m/s)² =  376 J

After coming to a  flat landing, his final speed is 7.8 m/s, so the final kinetic energy is as follows:

K₂ = 1/2 m v₂² = 1/2. 58.0 Kg. (7.8)² (m/s)² = 1,764 J

Now, when skying down the slope the increase in kinetic energy only can come from another type of energy, in this case, gravitational potential energy.

If we take the ground flat level as a Zero reference, the initial gravitational potential energy, can be written as follows, by definition:

U₁ = m.g. h (1)

Now, we don't know the value of the height h, but we know that the incline has a 18º angle above the horizontal, and that the distance travelled along the incline is 15 m.

By definition, the sinus of an angle, is equal to the proportion between the height and the hypotenuse , so we can write the following equation:

sin 18º = h / 15 m ⇒ h = 15 m. sin 18º = 4.6 m

Replacing in (1), we get:

U₁ = 58.0 Kg. 9.8 m/s². 4.6 m = 2,641 J

So, we can get the total initial mechanical energy, as follows:

E₁ = K₁ + U₁ = 376 J + 2,641 J = 3,017 J

After arriving to the flat zone, all potential energy has become in kinetic energy, even though not completely, due to the effect of friction.

This remaining kinetic energy can be written as follows:

E₂ = K₂ = 1,764 J

The difference E₂-E₁, is the loss of energy due to friction forces acting during the travel along the 15 m path, and is as follows:

ΔE= E₂ - E₁ = 1,764 J - 3,017 J = -1,253 J

You might be interested in
two charges + 2.6 uc and -5.4uc experience an attractive force of 6.5mN. What is the separation between the charges?
djyliett [7]

Answer:

...

Explanation:

....

7 0
3 years ago
Helpp!!! Will mark brainlst
masya89 [10]

Answer:

i dont know

Explanation:

cuz i dont know what it wrote its too blurry

5 0
3 years ago
Oil having a density of 922kg/m^3 floats on water. A rectangular block of wood 3.97 cm high and with a density of 963 kg/m^3 flo
Blizzard [7]

Explanation:

For the equilibrium:

\rho_{wood}gh-\rho_{oil}g(h-x)-\rho_{water}gx=0ρ

wood

gh−ρ

oil

g(h−x)−ρ

water

gx=0

\rho_{wood}h-\rho_{oil}(h-x)-\rho_{water}x=0ρ

wood

h−ρ

oil

(h−x)−ρ

water

x=0

(974)(3.97)-928(3.97-x)-1000x=0(974)(3.97)−928(3.97−x)−1000x=0

x=2.54\ cmx=2.54 cm

3 0
2 years ago
What did early experiments and Coulomb’s Law describe? Select all that apply.
Luda [366]
<span>Like charges repel and opposite charges attract.
The further away two charged objects are the weaker the electrical force between them.
The closer two charged objects are the stronger the electrical force between them.
Hope this helps :)</span>
4 0
3 years ago
Read 2 more answers
A bus slows with constant acceleration from 24.0 m/s to 16.0 m/s and moves 50.0 m in the process. (a) How much further does it t
navik [9.2K]

Answer:

(a) Bus will traveled further a distance of 40 m

(b) It will take 7.5 sec to stop the bus

Explanation:

We have given initial velocity of the bus u = 24 m/sec

And final velocity v = 16 m/sec

Distance traveled in this process s = 50 m

From third equation of motion we know that v^2=u^2+2as

16^2=24^2+2\times a\times 50

a=-3.2m/sec^2

(a) Now as the bus finally stops so final velocity v = 0 m/sec

So v^2=u^2+2as

0^2=24^2-2\times 3.2\times s

s= 90 m

So further distance traveled by bus = 90-50 =40 m

(b) Now as the bus finally stops so final velocity v= 0 m/sec

Initial velocity u = 24 m/sec

Acceleration a=-3.2m/sec^2

So time t=\frac{v-u}{a}=\frac{0-24}{-3.2}=7.5sec

7 0
3 years ago
Other questions:
  • Which of the following is true about a rigid body in dynamic equilibrium? The body can have translational motion, but it cannot
    10·1 answer
  • Our Sun will eventually:
    6·2 answers
  • Explain how a generator creates electricity.
    9·2 answers
  • Which two statements about an electric motor are true?
    8·2 answers
  • A crate is being pushed at a constant velocity. What force are being used?
    11·2 answers
  • A bowler throws a ball down the lane toward the pins. The ball reaches the pins and slowly moves through them, knocking down the
    9·1 answer
  • The body is subjected to a force of 0,4 N m with a shoulder of 5 cm. What is the magnitude of this force?​
    11·1 answer
  • Dynamic stretching is a series of movements that warm up the body before an intended activity. Which dynamic stretch would warm
    14·1 answer
  • When light traveling in straight lines passes through an object that is curved like a lens, the light is ________ at different a
    11·1 answer
  • Please help me with this <br><br> I’ll mark your Brainly <br><br><br> PLSSSS
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!