Answer: 29.50 m
Explanation: In order to calculate the higher accelation to stop a train without moving the crates inside the wagon which is traveling at constat speed we have to use the second Newton law so that:
f=μ*N the friction force is equal to coefficient of static friction multiply the normal force (m*g).
f=m.a=μ*N= m*a= μ*m*g= m*a
then
a=μ*g=0.32*9.8m/s^2= 3.14 m/s^2
With this value we can determine the short distance to stop the train
as follows:
x= vo*t- (a/2)* t^2
Vf=0= vo-a*t then t=vo/a
Finally; x=vo*vo/a-a/2*(vo/a)^2=vo^2/2a= (49*1000/3600)^2/(2*3.14)=29.50 m
<span> gravitational force varies based on 1/r^2
when you're double the distance =10,000 to 20,000, the force is 4 times smaller so on and so forth.
</span><span>As force is proportional to 1 / {distance squared}, the force will be 1 / 2^2 (i.e. 1/4) of the force at the reference distance (i.e. 1/4 * 600 = 150 lb)
</span>hope this helps
Renewable resources are going to be important in our future because if we use up all of our NON-renewable resources now, then we’ll still have the renewable resources to depend on.
I hope this helped! :-)
Answer: the waves travel in an horizontal direction while the strings vibrate in a vertical direction.
Answer:
Part a)

Part b)

Explanation:
Since the ball and rod is an isolated system and there is no external force on it so by momentum conservation we will have

here we also use angular momentum conservation
so we have

also we know that the collision is elastic collision so we have

so we have

also we know

also we know

so we have


now we have


Part b)
Now we know that speed of the ball after collision is given as

so it is given as
