Answer:
The specific heat of the metal is 2.09899 J/g℃.
Explanation:
Given,
For Metal sample,
mass = 13 grams
T = 73°C
For Water sample,
mass = 60 grams
T = 22°C.
When the metal sample and water sample are mixed,
The addition of metal increases the temperature of the water, as the metal is at higher temperature, and the addition of water decreases the temperature of metal. Therefore, heat lost by metal is equal to the heat gained by water.
Since, heat lost by metal is equal to the heat gained by water,
Qlost = Qgain
However,
Q = (mass) (ΔT) (Cp)
(mass) (ΔT) (Cp) = (mass) (ΔT) (Cp)
After mixing both samples, their temperature changes to 27°C.
It implies that
, water sample temperature changed from 22°C to 27°C and metal sample temperature changed from 73°C to 27°C.
Since, Specific heat of water = 4.184 J/g°C
Let Cp be the specific heat of the metal.
Substituting values,
(13)(73°C - 27°C)(Cp) = (60)(27°C - 22℃)(4.184)
By solving, we get Cp =
Therefore, specific heat of the metal sample is 2.09899 J/g℃.
Answer: KMnO4-
Explanation:
You're looking at one potassium plus a polyatomic ion.
So K plus MnO4, equals:
KMnO4-
It also has a molar mass of 158.04 g/mol, I don't know if you need that, but I thought it would be nice to include it.
Answer:
Groups like the Halogens, which include Chlorine and Flourine, share similar properties both behaviorally and structurally. The Periodic Table is essentially a bunch of patterns and trends and the groups (like the one with Sodium and Potassium) were grouped together because of these similarities.
Explanation:
https://en.wikipedia.org/wiki/Alkali_metal
Answer:
Na2SO4 means: two moles sodium (45.98 g), one mole sulfur (32.06 g), and four moles oxygen (64.00 g) combine to form one mole of sodium sulfate (142.04 g).
Explanation: