Answer:
Explanation:
How many mols do you have?
1 mol = 6.02 * 10^23 atoms
x mol = 6.25 * 10 ^32 atoms
1/x = 6.02*10^23 / 6.25 * 10^32 Cross multiply
6.02 * 10^23 * x = 1 * 6.25 * 10^32 Divide by 6.02 * 10^23
x = 6.25 * 10*32/ 6.02 ^10^23
x = 1.038 * 10^9 mols which is quite large.
Find the number of grams. (Use the value for copper on your periodic table. I will just use an approximate number.)\
1 mol of copper = 63 grams.
1.038 * 10^9 mols of copper = x
1/1.038 * 10^9 = 63/x Cross multiply
x = 1.038 * 10^9 * 63
x = 6.54 * 10^10 grams of copper.
Answer:
Filtration method
Explanation:
This method is the most easy method to separate a mixture
Group 13 metals like aluminum lose three electrons to form an ion with a 3+ charge
<span> Well, here are the characteristics of ionic compounds: 1) Because of the electrostatic force of attraction (one of the strongest force), these types of compounds are usually rigid. 2) High melting points (like REALLY high compared to other colavent compounds). Ex. table salt (NaCl melts at 1714 degrees fahrenheit, while CH4 melts at -295 degrees fahrenheit). See the drastic difference? 3) Majority of ionic compounds dissolve easily in water. Notice how I say majority, as some ionic compounds are insoluble in water, and this just have to do with their intermolecular attraction between themselves relative to that between the ions and water. If for any reason you need to know these solubility characteristics, just google solubility table or something along that line. 4) When dissolved in a solution, any ionic compound can conduct electricity because the ions are floating freely and can therefore transfer electrons around. In their solid form, however, they cant because all the ions are stuck in place and cant move around. 5) Ionic compounds form a really specific shape, and all the ions are orderly placed and evenly distributed in the crystal lattice. The geometric shape of the compound is a chemical property, which means that it varies across species.</span>