You draw 3 circles around the stations with the size of the circle equal to the distance from the earthquake. Then you simply find where the edge circles all overlap.
Answer:
The solution and the graph are in the attached files below
Explanation:
Gyroscopic wander can be divided into two categories and these are:
- Drift
- Topple
<h3>What is
gyroscopic wander?</h3>
Gyroscopic wander can be defined as a movement of the spin axis (axis of rotation) away from a specific fixed direction.
Based on scientific information and records, there are two main types of gyroscopic wander and these include the following:
Read more on gyroscopic wander here: brainly.com/question/12168194
#SPJ12
The axial field is the integration of the field from each element of charge around the ring. Because of symmetry, the field is only in the direction of the axis. The field from an element ds in the ring is
<span>dE = (qs*ds)cos(T)/(4*pi*e0)*(x^2 + R^2) </span>
<span>where x is the distance along the axis from the plane of the ring, R is the radius of the ring, qs is the linear charge density, T is the angle of the field from the x-axis. </span>
<span>However, cos(T) = x/sqrt(x^2 + R^2) </span>
<span>so the equation becomes </span>
<span>dE = (qs*ds)*[x/sqrt(x^2 + R^2)]/(4*pi*e0)*(x^2 + R^2) </span>
<span>dE =[qs*ds/(4*pi*e0)]*x/(x^2 + R^2)^1.5 </span>
<span>Integrating around the ring you get </span>
<span>E = (2*pi*R/4*pi*e0)*x/(x^2 + R^2)^1.5 </span>
<span>E = (R/2*e0)*x*(x^2 + R^2)^-1.5 </span>
<span>we differentiate wrt x, the term R/2*e0 is a constant K, and the derivative is </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 +x*[(-1.5)*(x^2 + R^2)^-2.5]*2x} </span>
<span>dE/dx = K*{(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5} </span>
<span>to find the maxima set this = 0, giving </span>
<span>(x^2 + R^2)^-1.5 - 3*x^2*(x^2 + R^2)^-2.5 = 0 </span>
<span>mult both side by (x^2 + R^2)^2.5 to get </span>
<span>(x^2 + R^2) - 3*x^2 = 0 </span>
<span>-2*x^2 + R^2 = 0 </span>
<span>-2*x^2 = -R^2 </span>
<span>x = (+/-)R/sqrt(2) </span>