Answer: 10.99
Explanation: because you take the Cao 13.9 and take CO2 which is 10.99 and it makes 24.8 . Which is CaCO3.
In this item, I supposed, that we are determine the molar fraction of oxygen and carbon dioxide in the sample. This can be done by dividing their respective partial pressures by the total pressure of the sample.
O2 : mole fraction = (100.7 mmHg) / (763.00 mmHg) = 0.13
CO2 : mole fraction = (33.57 mmHg) / (763.00 mmHg) = 0.044
Answers: O2 = 0.13
CO2 = 0.044
Answer:
Approximately
, assuming that this acid is monoprotic.
Explanation:
Assume that this acid is monoprotic. Let
denote this acid.
.
Initial concentration of
without any dissociation:
.
After
of that was dissociated, the concentration of both
and
(conjugate base of this acid) would become:
.
Concentration of
in the solution after dissociation:
.
Let
,
, and
denote the concentration (in
or
) of the corresponding species at equilibrium. Calculate the acid dissociation constant
for
, under the assumption that this acid is monoprotic:
.
Answer:
D. 1
Explanation:
Hydrogen is the chemical element with the symbol H and atomic number 1. With a standard atomic weight of 1.008, hydrogen is the lightest element in the periodic table. Hydrogen is the most abundant chemical substance in the Universe, constituting roughly 75% of all baryonic mass.
To balance a chemical equation you must pay attention that the algebraic equation has the same number of element atoms in reactant and the product.
A chemical equation is a term to refer to the symbolic description of a chemical reaction, that is, the written representation of symbols. For example:
The balance of an equation can be related to the law of conservation of matter, that is, the number of atoms of each element in the reactants is in the result.
Note: This question is incomplete, because the information some information is missing.
Learn more in: brainly.com/question/12271256