The theoretical yield of urea : = 227.4 kg
<h3>Further explanation</h3>
Given
Reaction
2NH3(aq)+CO2(aq)→CH4N2O(aq)+H2O(l)
128.9 kg of ammonia
211.4 kg of carbon dioxide
166.3 kg of urea.
Required
The theoretical yield of urea
Solution
mol Ammonia (MW=17 g/mol)
=128.9 : 17
= 7.58 kmol
mol CO₂(MW=44 g/mol) :
= 211.4 : 44
= 4.805 kmol
Mol : coefficient of reactant , NH₃ : CO₂ :
= 7.58/2 : 4.805/1
=3.79 : 4.805
Ammonia as limiting reactant(smaller ratio)
Mol urea based on mol Ammonia :
=1/2 x 7.58
=3.79 kmol
Mass urea :
=3.79 kmol x 60 g/mol
= 227.4 kg
Answer:
A. a new substance is being produced.
Explanation:
The bubbles most likely indicates that a new substance is being produced by this reaction. In essence, we describe this sort of change as chemical change.
In a chemical change, new substances are usually produced. They are accompanied by the evolution or absorption of energy.
The reaction of Zinc with a strong acid to produce bubbles on the surface of the metal indicates a chemical change and the formation of a new kind of substance.
Take for example, let zinc reacts with hydrocholoric acid, HCl;
Zn + 2HCl → ZnCl₂ + H₂
Since Zn is higher than Hydrogen in the activity series, it will displace it from HCl and liberate hydrogen gas as a product. This will cause the bubbles observed in the reaction.
This is a chemical change and new products have been formed.
B and D are wrong because they are both physical changes.
C is wrong because no information about such is provided by the problem statement.
So, when a piece of zinc metal combines with a strong acid, a new kind of substance is produced.
"Atoms have an equal proton and neutron charge."
Ions are atoms with a charge other than zero. In a neutral atom, the number of protons (positively charged particles) in the nucleus equals the number of electrons orbiting the nucleus.
Atoms can gain or lose electrons (not protons) resulting in a net charge other than zero. Atoms which lose electrons (usually metals) become positively charges, and atoms which gain electrons (usually nonmetals) become negatively charged.
This problem is providing two reduction-oxidation (redox) reactions in which the oxidized and reduced species can be identified by firstly setting the oxidation number of each element:
Reaction 1: 2K⁺I⁻ + H₂⁺O₂⁻ ⇒2K⁺O⁻²H⁺ + I₂⁰
Reaction 2: Cl₂⁰ + H₂⁰ ⇒ 2H⁺CI⁻
Next, we can see that iodine is being oxidized and oxygen reduced in reaction #1 and chlorine is being reduced and hydrogen oxidized in reaction #2 because the oxidized species increase the oxidation number whereas the reduced ones decrease it.
In such a way, the correct choice is C.
Learn more: