We have that the molecular weight (3sf) of the compound (g/mol)

From the question we are told
A solution made by mixing 20.0 g of a non-volatile compound with 125 mL of water at 25°C has a vapor pressure of 22.67 torr. What is the molecular weight (3sf) of the compound (g/mol).
Generally the equation for the Rouault's law is mathematically given as
P=P_0 N

Therefore
The molecular weight (3sf) of the compound (g/mol)
For more information on this visit
brainly.com/question/17756498
Answer: 5
Explanation: this is because the energy level of the emitted of absorbed photon increases as the number of electron shell decreases, thereby making the inner shell have higher energy than other shells
M = 2 . 8 . 2
Valence Electron of M = 2
M ==> M⁺² + 2 e⁻
a. M⁺² + OH⁻ ==> M(OH)₂
b. M⁺² + PO₄⁻³ ==> M₃(PO₄)₂
The atoms that would be expected to be diamagnetic in the ground state is magnesium
The magnetism of an atom refers to its electronic configuration. A diamagnetic atom is an atom whose electrons are all paired.
A paired electron is an electron that occurs in pairs in its orbital shell.
At their respective ground state, the electronic configuration of the given elements are as follows:
The electronic configuration of magnesium is 1s²2s²2p⁶3s². As such its a diamagnetic atom.
The electronic configuration of Potassium is 1s²2s²2p⁶3s²3p⁶4s¹. Hence, Potassium has one unpaired electron in its outermost shell.
The electronic configuration of Chlorine is 1s²2s²2p⁶3s²3p⁵. Hence, Chlorine has one unpaired electron in its outermost shell.
The electronic configuration of Cobalt is 1s²2s²2p⁶3s²3p⁶3d⁷4s². Hence, the unpaired electrons of Cobalt in its outermost shell are three.
Therefore, the atoms that are diamagnetic in the ground state is magnesium.
Learn more about diamagnetic atoms here:
brainly.com/question/18865305?referrer=searchResults
Answer:
2s2 2p5
Rb < Sr< Sn< Te<I
Explanation:
Electron affinity is the ability of an atom to accept electrons to form negative ions.
Electron affinity is a periodic trend that decreases down the group but increases across the period.
This accounts for the trends observed in the answer. The atom having the electronic configuration, 2s2 2p5 must be a halogen and it exhibits the highest value of electron affinity.
Also, since electron affinity increases across the period, the electron affinities of the elements increases. Therefore, the arrangement of atoms as shown in the answer depends on increasing electron affinity.