Explanation:
It is given that,
The volume of a right circular cylindrical, 
We know that the volume of the cylinder is given by :

............(1)
The upper area is given by :



For maximum area, differentiate above equation wrt r such that, we get :



r = 1.83 m
Dividing equation (1) with r such that,



Hence, this is the required solution.
Answer:
6.32m/s
Explanation:
note:Now these calculations are based in the fact that acc. due to gravity is 10m/s²
okay so I'm thinking you think the speed of a body depends on the mass of the body also,umh... well it doesn't at all!
when two bodies of different masses fall from the same height,they fall at the same time( this is just to say)
now enough of the talking let solve....
so the ball was dropped .ie from rest to the ground through a distance of 2m,
the formula for calculating the distance if a body moving in a straight line is given by:
S=ut + ½at² where u is initial velocity, a is acceleration ( of the body or due to gravity, but since its falling freely under the influence of gravity its " we use the acceleration due to gravity ,which is 10m/s²) and t is the time taken to cover the distance.
from our question the ball was dropped from rest thus its u is 0 therefore we use this equation to find the time it took to touch ground (S=½at²)
solving ....
we get t to be 0.632s
to find the speed we substitute t in the equation below:
V=u+at ,but since u=0
V=at =10•0.632=6.32m/s
therefore the speed the body uses to strike the ground is 6.32m/s
Answer: The earth is a noisy place. Seismometers, which measure ground movements to detect earthquakes, volcanic eruptions, and manmade explosives, are constantly recording smaller vibrations caused by ocean waves, rushing rivers, and industrial activity.
Explanation:
Answer:
The value is 
Explanation:
From the question we are told that
The number of turns is N = 1000
The length is L = 50 cm = 0.50 m
The radius is r = 2.0 cm = 0.02 m
The current is I = 18.0 A
Generally the magnetic field is mathematically represented as

Here
is the permeability of free space with value

So

=> 
Coulomb's law:
Force = (<span>8.99×10⁹ N m² / C²<span>) · (charge₁) · (charge₂) / distance²
= (</span></span><span>8.99×10⁹ N m² / C²<span>) (1 x 10⁻⁶ C) (1 x 10⁻⁶ C) / (1.0 m)²
= (8.99×10⁹ x 1×10⁻¹² / 1.0) N
= 8.99×10⁻³ N
= 0.00899 N repelling.
Notice that there's a lot of information in the question that you don't need.
It's only there to distract you, confuse you, and see whether you know
what to ignore.
-- '4.0 kg masses'; don't need it.
Mass has no effect on the electric force between them.
-- 'frictionless table'; don't need it.
Friction has no effect on the force between them,
only on how they move in response to the force.
</span></span>