Answer:
the gauge pressure at the upper face of the block is 116 Pa
Explanation:
Given the data in the question;
A cubical block of wood, 10.0 cm on a side.
height h = 1.50 cm = ( 1.50 × ( 1 / 100 ) ) m = 0.0150 m
density ρ = 790 kg/m³
Using expression for the gauged pressure;
p-p₀ = ρgh
where, p₀ is atmospheric pressure, ρ is the density of the substance, g is acceleration due to gravity and h is the depth of the fluid.
we know that, acceleration due to gravity g = 9.8 m/s²
so we substitute
p-p₀ = 790 kg/m³gh × 9.8 m/s² × 0.0150 m
= 116.13 ≈ 116 Pa
Therefore, the gauge pressure at the upper face of the block is 116 Pa
Answer:
Power factor = 0.87 (Approx)
Explanation:
Given:
Load = 1 Kw = 1000 watt
Current (I) = 5 A
Supply (V) = 230 V
Find:
Power factor.
Computation:
Power factor = watts / (V)(I)
Power factor = 1,000 / (230)(5)
Power factor = 1,000 / (1,150)
Power factor = 0.8695
Power factor = 0.87 (Approx)
Answer:
rpm
Explanation:
Given that rotational kinetic energy = 
Mass of the fly wheel (m) = 19.7 kg
Radius of the fly wheel (r) = 0.351 m
Moment of inertia (I) = 
Rotational K.E is illustrated as 





Since 1 rpm = 



Answer:
The x-component of the electric field at the origin = -11.74 N/C.
The y-component of the electric field at the origin = 97.41 N/C.
Explanation:
<u>Given:</u>
- Charge on first charged particle,

- Charge on the second charged particle,

- Position of the first charge =

- Position of the second charge =

The electric field at a point due to a charge
at a point
distance away is given by

where,
= Coulomb's constant, having value 
= position vector of the point where the electric field is to be found with respect to the position of the charge
.
= unit vector along
.
The electric field at the origin due to first charge is given by

is the position vector of the origin with respect to the position of the first charge.
Assuming,
are the units vectors along x and y axes respectively.

Using these values,

The electric field at the origin due to the second charge is given by

is the position vector of the origin with respect to the position of the second charge.

Using these values,

The net electric field at the origin due to both the charges is given by

Thus,
x-component of the electric field at the origin = -11.74 N/C.
y-component of the electric field at the origin = 97.41 N/C.
Answer:
Technician A only
Explanation:
Both high-side pressures and low-side pressures are low with the engine running and the selector set to the air-conditioning position. Technician A says that the system is undercharged. Technician B says the cooling fan could be inoperative. Which technician is correct?
usually . An overcharged system will result in lower than normal low side pressures
An undercharged system will not enable the compressor to create pressure. As a result of the low amount of refrigerant, the cooling ability is reduced. When we say undercharged, we mean the refrigerant in the system is low, so the both the high side pressures and low side pressures will be low.