Two physical systems are in thermal equilibrium if no heat flows between them when they are connected by a path permeable to heat. Thermal equilibrium obeys the zeroth law of thermodynamics. A system is said to be in thermal equilibrium with itself if the temperature within the system is spatially and temporally uniform.
Systems in thermodynamic equilibrium are always in thermal equilibrium, but the converse is not always true. If the connection between the systems allows transfer of energy as heat but does not allow transfer of matter or transfer of energy as work, the two systems may reach thermal equilibrium without reaching thermodynamic equilibrium.
Answer:
The most common products include aerosols, anti-freeze, asbestos, fertilizers, motor oil, paint supplies, photo chemicals, poisons, and solvents, cleaning supplies.
Explanation:
Use homemade cleaners
You can find local retailers to take rechargeable batteries from laptop computers, cordless power tools, cellular and cordless phones, and camcorders at the Rechargeable Battery Recycling Corporation’s website
Answer:
Zero
Explanation:
here, the inductive reactance and the capacitive reactance is same, so this is the condition for resonance.
In the condition for resonance,
the circuit and the voltage in the circuit is in the same phase and the impedance of the circuit is minimum which is equal to the resistance of the circuit.
The phase angle is given by

Ф = 0
We can solve the problem by using Newton's second law of motion:

where
F is the net force applied to the object
m is the object's mass
a is the acceleration of the object
In this problem, the force applied to the car is F=1050 N, while the mass of the car is m=760 kg. Therefore, we can rearrange the equation and put these numbers in, in order to find the acceleration of the car:

The equation also tells us that the acceleration and the force have same directions: therefore, since the force exerted on the car is horizontal, the correct answer is
<span>
B) 1.4 m/s2 horizontally.</span>