Answer:
about 42.35 m/s
Explanation:
Use the equation for accelerated motion (g), and with zero initial velocity that doesn't include time:

which for our case would reduce to:

then the velocity just before hitting would be about 42.35 m/s
Answer: 12.5 km/s
I don't really know how to explain this, but here is your answer.
Answer: the sun
Explanation:
The sun's radiant energy reaches the earth's surface either directly through radiation, indirectly through convection, or it can move "across" or "through" objects or materials on the surface via conduction. Let's look more closely at each case. We've probably experienced the feeling of "warmth" of the sun on our skin on a sunny day. Light energy from the sun is reaching us across space and down through the atmosphere through radiation. A dark colored vehicle in the sun quickly becomes warm (or hot!) to the touch because of radiation. The light energy from the sun heats the air in the earth's atmosphere, and this drives convection and transfers thermal energy around. It is possible that we've felt a "hot breeze" on our skin on sunny days. The thermal energy in the air will be carried to objects in its path, and it will warm them.
Answer:
The Troposphere is the lowermost portion of Earth’s atmosphere. It is the densest layer of the atmosphere and contains approximately 75 percent of the mass of the atmosphere and almost all the water vapor and aerosol. The troposphere extends from the Earth’s surface up to the tropopause where the stratosphere begins.
Explanation:
Answer
= 60
Hope it helps:)