Answer:
Mass is how much space the object takes up and how much it has inside, and weight is how heavy the object is.
Explanation: Hope this helps ;)
Answer:
1. 2.67 s
2. 0.1 m/s²
Explanation:
1. Determination of the time taken for the penguin to fall.
Height (h) of cliff = 35 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
35 = ½ × 9.8 × t²
35 = 4.9 × t²
Divide both side by 4.9
t² = 35 / 4.9
Take the square root of both side
t = √(35 / 4.9)
t = 2.67 s
Thus, it will take 2.67 s for the penguin to fall onto the head of a napping polar bear.
2. Determination of the acceleration of the penguin.
Initial velocity (u) = 0 m/s.
Final velocity (v) = 2 m/s.
Time (t) = 20 s
Acceleration (a) =?
a = (v – u)/t
a = (2 – 0)/ 20
a = 2 / 20
a = 0.1 m/s²
Thus, the acceleration of the penguin is 0.1 m/s²
Take note of the reaction formula which is PCl5=Cl2+PCl3.
The Keq = [Cl2] * [PCl3] / [PCl5]=2.24*10^-2.
For the reason that the volume is 1 liter, the concentration of Cl2 will be computed through: <span>(2.24 * 10^-2) * 0.235 / 0.174 </span> = 0.0303 mol/L is the answer.
Answer:
The minimum frequency of the coil is 7.1 Hz
Explanation:
Given;
number of turns, N = 200 turns
cross sectional area, A = 300 cm² = 300 x 10⁻⁴ m²
magnitude of magnetic field strength, B = 30 x 10⁻³ T
maximum value of the induced emf, E = 8 V
Maximum induced emf is given as;
E = NBAω
where
ω is angular velocity (ω = 2πf)
E = NBA2πf
where;
f is the minimum frequency, measured in hertz (Hz)
f = E / (NBA2π)
f = 8 / (200 x 30 x 10⁻³ x 300 x 10⁻⁴ x 2 x 3.142)
f = 7.073 Hz
f = 7.1 Hz
Therefore, the minimum frequency of the coil is 7.1 Hz
I think shock waves require more speed they travel at the speed of sound