The moment of inertia is the rotational analog of mass, and it is given by
the product of mass and the square of the distance from the axis.
- The moment of inertia changes as the position of the weight is changed, which indicates that; statement is incorrect
Reasons:
The weight on each arm that have adjustable positions can be considered as point masses.
The moment of inertia of a point mass is <em>I</em> = m·r²
Where;
m = The mass of the weight
r = The distance (position) from the center to which the weight is adjusted
Therefore;
The moment of inertia, <em>I </em>∝ r²
Which gives;
Doubling the distance from the center of rotation, increases the moment of inertia by factor of 4.
Therefore, the statement contradicts the relationship between the radius of rotation and moment of inertia.
Learn more about moment of inertia here:
brainly.com/question/4454769
Answer:
The work done on the athlete is approximately 2.09 J
Explanation:
From the definition of the work done by a variable force:

and substituting with the function of our problem:

Answer:
Electrolytes are considered ions when placed in a solution and allow for adequate conduction of particle charges.
Explanation:
Electrolytes are substances that, when are dissolved in solution, separates into electrical positive charges (cations) and electrical negative charges (anions) which are known as ions.
These ions have an adequate capacity to conduct particle charges and, therefore electricity.
Sodium, calcium, phosphate and potassium, are examples of electrolytes.
<u>Hence, the correct answer is:</u>
Electrolytes are considered ions when placed in a solution and allow for adequate conduction of particle charges.
I hope it helps you!