1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Fiesta28 [93]
2 years ago
8

A particle initially located at the origin has an acceleration of vector a = 2.00ĵ m/s2 and an initial velocity of vector v i =

8.00î m/s.
(a) Find the vector position of the particle at any time t (where t is measured in seconds).
(b) Find the velocity of the particle at any time t.
(c) Find the coordinates of the particle at t = 8.00 s.
(d) Find the speed of the particle at t = 8.00 s.

Physics
1 answer:
natali 33 [55]2 years ago
5 0

With acceleration

\mathbf a=\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j

and initial velocity

\mathbf v(0)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i

the velocity at time <em>t</em> (b) is given by

\mathbf v(t)=\mathbf v(0)+\displaystyle\int_0^t\mathbf a\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\displaystyle\int_0^t\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)\,\mathbf j\,\mathrm du

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\bigg|_{u=0}^{u=t}

\mathbf v(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)t\,\mathbf j

We can get the position at time <em>t</em> (a) by integrating the velocity:

\mathbf x(t)=\mathbf x(0)+\displaystyle\int_0^t\mathbf v(u)\,\mathrm du

The particle starts at the origin, so \mathbf x(0)=\mathbf0.

\mathbf x(t)=\displaystyle\int_0^t\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u\,\mathbf j\,\mathrm du

\mathbf x(t)=\left(\left(8.00\dfrac{\rm m}{\rm s}\right)u\,\mathbf i+\dfrac12\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)u^2\,\mathbf j\right)\bigg|_{u=0}^{u=t}

\mathbf x(t)=\left(8.00\dfrac{\rm m}{\rm s}\right)t\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)t^2\,\mathbf j

Get the coordinates at <em>t</em> = 8.00 s by evaluating \mathbf x(t) at this time:

\mathbf x(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)(8.00\,\mathrm s)\,\mathbf i+\left(1.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)^2\,\mathbf j

\mathbf x(8.00\,\mathrm s)=(64.0\,\mathrm m)\,\mathbf i+(64.0\,\mathrm m)\,\mathbf j

so the particle is located at (<em>x</em>, <em>y</em>) = (64.0, 64.0).

Get the speed at <em>t</em> = 8.00 s by evaluating \mathbf v(t) at the same time:

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(2.00\dfrac{\rm m}{\mathrm s^2}\right)(8.00\,\mathrm s)\,\mathbf j

\mathbf v(8.00\,\mathrm s)=\left(8.00\dfrac{\rm m}{\rm s}\right)\,\mathbf i+\left(16.0\dfrac{\rm m}{\rm s}\right)\,\mathbf j

This is the <em>velocity</em> at <em>t</em> = 8.00 s. Get the <em>speed</em> by computing the magnitude of this vector:

\|\mathbf v(8.00\,\mathrm s)\|=\sqrt{\left(8.00\dfrac{\rm m}{\rm s}\right)^2+\left(16.0\dfrac{\rm m}{\rm s}\right)^2}=8\sqrt5\dfrac{\rm m}{\rm s}\approx17.9\dfrac{\rm m}{\rm s}

You might be interested in
If the angular frequency of the motion of a simple harmonic oscillator is doubled, by what factor does the maximum acceleration
Nataly_w [17]

Answer:

When we double the angular velocity the maximum acceleration (a_{max}) will changes by a factor of 4.

Explanation:

Given the angular frequency (\omega) of the simple harmonic oscillator is doubled.

We need to find the change in the maximum acceleration of the oscillator.

a_{max}=A\omega^2

Now, according to the problem, the angular frequency (\omega) got doubled.

Let us plug \omega=2\times \omega. Then the maximum acceleration will be a_{max'}

a_{max}=A\omega^2

a_{max'}=A(2\times \omega)^2\\a_{max'}=A\times 4\omega\\a_{max'}=4A\omega

a_{max'}=4a_{max}

We can see, when we double the angular velocity the maximum acceleration will changes by a factor of 4.

6 0
2 years ago
Volcanic eruptions are natural phenomena in the . They sometimes erupt, spilling out lava and dust. The lava solidifies, forming
solniwko [45]

Answer:

B. Geosphere

A. Biosphere

A. Atmosphere

Explanation:

Volcanic eruptions occurs within the Geosphere. The geosphere is the rock solid earth make up of rocks that extends into the deep interior.

Magma formed deep within the crust rises to elevated parts and finally erupts as lava on the surface. When they cool, they solidify to form volcanic rocks.

The volcanic eruptions affects the biosphere significantly. The biosphere is the portion of the earth where all life forms exists.

Gases and ash spewed during an eruption into the atmosphere causes severe changes to weather and leads to pollution. The atmosphere is the gaseous envelope round the earth.

3 0
3 years ago
A car drives at steady speed around a perfectly circular track.
gayaneshka [121]

Answer:

e. Both the acceleration and net force on the car point inward.

Explanation:

If no net force acts on the car, the car must drive in a straight line, at constant speed.

As the acceleration is defined as the rate of change of the velocity vector, this means that it can produce either a change in the magnitude of the velocity (the speed) or in the direction.

In order to the car can follow a circular trajectory, it must be subjected to an acceleration, that must go inward, trying to take the car towards the center of the circle.

The net force that causes this acceleration, aims inward, and is called the centripetal force.

It is not a different type of force, it can be a friction force, a tension force, a normal force, etc., as needed.

6 0
3 years ago
Hydraulic press is called an instrument for multiplication of force. Why?
Lisa [10]

Answer:

Hydraulic press is called an instrument for multiplication of force. Why? Because it uses Pascal's idea and  principle: F=p*S. If we apply small force to small piston you will generate a pressure. According to Pascal's law pressure is the same everywhere in closed system so the same pressure will act on large piston on the other side too.

Explanation:

4 0
3 years ago
150J of heat energy
arsen [322]

Btu/(lb-°F) J/(g-°C i mean this is the correct answer

6 0
2 years ago
Read 2 more answers
Other questions:
  • Suppose we could shrink the earth without changing its mass..?At what fraction of its current radius would the free-fall acceler
    10·2 answers
  • 1. Ca atomic number 2. H2O fission 3. nuclear decay element 4. nuclear synthesis fusion 5. η compound 6. positive charge electro
    5·2 answers
  • Which type of wave does the illustration depict?
    11·2 answers
  • Based on discoveries to date, which of the following conclusions is justified?a) Most stars have one or more terrestrial planets
    5·1 answer
  • A good baseball pitcher can throw a baseball toward home plate at 87 mi/h with a spin of 1710 rev/min. How many revolutions does
    9·1 answer
  • The electric potential, when measured at a point equidistant from two particles that have charges equal in magnitude but of oppo
    6·1 answer
  • Which of the following is a true statement?
    8·2 answers
  • why do this I'm trying to cheat and you put a question omgggggggggggggggggggggg!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    6·1 answer
  • You are walking toward the back of a train that is moving forward with a constant velocity. The train's velocity relative to the
    9·1 answer
  • if a certain star emits most intensely in the visible region of the spectrum, a cooler star would emit mostly in what part of th
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!