Answer:
We feel cold when tap or well water in winter because heat flows from hot body to cold body.
Explanation:
Our <em>body</em><em> </em><em>is</em><em> </em><em>in</em><em> </em><em>optimal</em><em> </em><em>status</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>hot</em><em> </em><em>body</em><em> </em><em>and</em><em> </em><em>tap</em><em> </em><em>or</em><em> </em><em>we</em><em>ll</em><em> </em><em>water</em><em> </em><em>is</em><em> </em><em>a</em><em> </em><em>cold</em><em> </em><em>body</em><em>.</em><em> </em><em>Theref</em><em>ore</em><em> </em><em>we</em><em> </em><em>feel</em><em> </em><em>cold</em><em>.</em>
Answer: See explanation
Explanation:
The evolutionary stages for the formation of planets from earliest to latest will be:
1. Dust keeps matter inside the disk cool enough for planet formation to start
2. Dust grains form condensation nuclei on which surrounding atoms condense to form small clumps of matter.
3. Small clumps of matter stick together via the process of accretion to form planetesimals a few hundred kilometers in diameter.
4. Planetesimals begin to accrete, forming protoplanets.
5. A collection of a few planet-sized protoplanets remain in a fairly cleared out disk around the star
Answer: 53.09Hz
Explanation:
The fundamental frequency of an ideal taut string is:
Fn= n/2L(√T/μ)
Where:
F= frequency per second (Hz)
T= Tension of the string (cm/s sqr)
L= Length of the string (cm)
μ= Linear density or mass per unit length of the string in cm/gm
√T/μ= square root of T divided by μ
It is important to note:
Note: Typically, tension would be in newtons, length in meters and linear density in kg/m, but those units are inconvenient for calculations with strings. Here, the smaller units are used.
F1= 1/2(376cm)(0.01/1) × (√574/(0.036g/cm)(0.1kg/m÷1g/cm)
F1= 0.1329 × 399.30
= 53.09Hz
I think you have them all marked correctly
7. They carry hereditary material from parent
8. 50 percent
1. Nutrition
2. X-linked dominant
If Im wrong Im sorry. its been like 4 years since i took biology but i remember some things
Answer:
Average current produced by the repeated transfer of charge is 5.6 × 10⁻⁷ ampere
Explanation:
The formula to be used here is
Q = It
where Q is the quantity of electricity and it is measured coulombs (C); 2.8 × 10⁻⁸ C or 0.000000028 C
I is current and it is measured in ampere (amps or A); unknown
t is time and it is measured in seconds (s); 0.05 s
Since, average current is what is unknown
I =Q/t
I = 0.000000028/0.05
I = 5.6 × 10⁻⁷ A
Average current produced by the repeated transfer of charge is 5.6 × 10⁻⁷ ampere