Answer:
(a) F = 239.575 N (b) t = 0.00649s or 6.49 ms
Explanation:
(a) By law of energy conservation, the bullet kinetic energy will be transferred to work done on stopping it from moving.
Formula for Kinetic Energy
where m is bullet mass, v is the velocity
Formula for work
where F is the average force and S is the distance travelled.



Substitute m = 4.2 g = 0.0042 kg, v = 370 m/s and S = 1.2 (m)

(b) If the force is constant, since the mass is constant and F = ma according to Newton's 2nd law, the acceleration on bullet is also constant

We also have 
At the time the bullet is coming to rest, 
Therefore, 

Remember opposites attract and same charges repel each other.
Object A= negatively charged.
Object A and B attract so B must be positively charged.
Object B and C repel so because B is positively charged C must also be positively charged.
Object C and D attract and because C is positively charged, D must be negatively charged.
To illustrate clearly, I will rewrite the reaction in a more understandable manner.
<span>2 Al(s) + Fe</span>₂O₃ (s) ⇒ 2 Fe(s) + Al₂O₃(s) Δ<span>hrxn = –850 kJ
This reaction has a negative sign for the change in enthalpy of reaction. The sign convention only means that the reaction releases energy to the surroundings. In other words, the reaction is exothermic. Focusing on only its magnitude, this means that 850 kJ of energy is needed for this reaction of 2 Aluminum moles and 1 mole of </span>Fe₂O₃ to occur.
Now, if you only had an energy of 725 kJ, then the reaction is incomplete but it will still form Iron (Fe). We use stoichiometric calculations as follows:
725 kJ * (2 mol Fe/850 kJ) = 1.7 moles of Fe
Knowing that the molar mass of Fe is 55.6 g/mol, then the mass of produced iron is
1.7 mol Fe * 55.6 g/mol = 94.85 g iron
The strain energy stored in a linear spring is
SE = (1/2)*k*x²
where
k = the spring constant
x = the extension (or compression) of the spring
Given:
k = 470 N/m
x = 17.0 cm = 0.17 m
Therefore
SE = 0.5*(470 N/m)*(0.17 m)² = 6.7915 J
Answer: 6.8 J (nearest tenth)
Answer:
The allowed current in the cable is 1.15 A.
Explanation:
Given that,
Distance = 1.00 m
Suppose the magnetic field is
and if the experiment is to be accurate to 1.0 %
We need to calculate the current
Using formula of magnetic field


Put the value into the formula


If the experiment is to be accurate to 1.0%
Then,
We need to calculate the allowed current in the cable



Hence, The allowed current in the cable is 1.15 A.