Answer:
Less than 1 m
Explanation:
When objects are getting closer to each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the blue shift of waves. Here, the wavelength reduces.
In the opposite case the when objects are getting farther from each other there is a slight change in the wavelength that is being transmitted by either objects. This is known as the red shift. Here, the wavelength increases.
In this case the spaceship is getting close to Earth hence the wavelength will be lower than 1 m.
Answer:
9.34 N
Explanation:
First of all, we can calculate the speed of the wave in the string. This is given by the wave equation:

where
f is the frequency of the wave
is the wavelength
For the waves in this string we have:
, since it completes 625 cycles per second
is the wavelength
So the speed of the wave is

The speed of the waves in a string is related to the tension in the string by
(1)
where
T is the tension in the string
is the linear density
In this problem:
is the mass of the string
L = 0.75 m is the its length
Solving the equation (1) for T, we find the tension:

Answer:

Explanation:
We know that acceleration is change in velocity over time.


v is the final velocity and u is the initial velocity.
Solve for v.
Multiply both sides by t.

Add u to both sides.

Answer:
only reason an object will move in a different direction to the net force on it is because of its prior momentum and it will always accelerate in the direction of the force if thats what u mean.. lol
Explanation:
All living organisms need energy grow and reproduce maintain their structures, and respond to their enviorments: metabolism is the set of the processes that make energy available for cellular processes.