When a charged object is brought near to but does not touch a neutral object, it causes the side of the neutral object that the charged object is near to become the other charge. It causes charge migration within the neutral object so the two charges (positive and negative) move to opposite sides of the object. Because the two objects do not touch, they do not repel each other, but rather have a slight attraction because of charge migration. If the two object were to touch then they would repel.
3. In a uniform electric field, the equation for the magnitude of the magnetic field is E=(V/d). V= voltage d= distance. If the magnetic field magnitude is
constant , as stated in your problem, then the voltage must stay the same otherwise the value of "E" would change". And the problem already told us the "E" is uniform and so, not changing. Does that make sense?
4a. If the magnetic field lines are equally spaced apart, in other words share the same
density. Then we know that the magnitude of the magnetic field is unchanging. This is because the density of of the magnetic field lines(how many are in a certain area) is related to the magnitude being expressed by the electric field. Greater magnitude is expressed by the presence of more lines (higher line density)
4b. The electric potential is measured in Volts(V) and is uniform along the same equipotential line. What is an equipotential line(gray)? It is a line drawn perpendicular(forms a right angle with) to the magnetic field lines(black) to show the changes in electric potential. One space where electric potential will always be the same because it will always be equal to 0 Volts is exactly in between a positive and negative charges of equal charge value I have pointed to this line with a purple arrow in my picture.
I really hope this makes sense to you and that my pictures help! :)
Answer:
Electric current is defined as the rate of flow of electric charge in a circuit from point one point to another. This is carried by electrically charged particles within the circuit. Current is represented by the symbol I and its unit measured in Amperes. It is therefore related to the voltage and resistance of the circuit. If the current in the circuit reduces, the rate at which the charge and current on the capacitor reduces also proportionally in an exponential manner.
Explanation:
Since a decrease in the flow of current in the circuit is observed, the implication for the rate at which the charge and voltage on the capacitor is also an exponential decrease in the rate of flow with time. This is because the electric current is directly proportional to the electric charge and the time.
That's false.
The definition of momentum is (mass) x (speed), so they must be multiplied.
"20,000 kg-m/s" has the correct units resulting from multiplication, but the number could only be the result of division.
It depends on the steady-state frequency. At zero frequency an inductor behaves like an open circuit. As the frequency increases, the inductor acts more like an open circuit and a capacitator acts more like a short circuit