Answer:
7.22 × 10²⁹ kg
Explanation:
For the material to be in place, the gravitational force on the material must equal the centripetal force on the material.
So, F = gravitational force = GMm/R² where M = mass of neutron star, m = mass of object and R = radius of neutron star = 17 km
The centripetal force F' = mRω² where R = radius of neutron star and ω = angular speed of neutron star
So, since F = F'
GMm/R² = mRω²
GM = R³ω²
M = R³ω²/G
Since ω = 500 rev/s = 500 × 2π rad/s = 1000π rad/s = 3141.6 rad/s = 3.142 × 10³ rad/s and r = 17 km = 17 × 10³ m and G = universal gravitational constant = 6.67 × 10⁻¹¹ Nm²/kg²
Substituting the values of the variables into M, we have
M = R³ω²/G
M = (17 × 10³ m)³(3.142 × 10³ rad/s)²/6.67 × 10⁻¹¹ Nm²/kg²
M = 4913 × 10⁹ m³ × 9.872 × 10⁶ rad²/s²/6.67 × 10⁻¹¹ Nm²/kg²
M = 48,501.942 × 10¹⁵ m³rad²/s² ÷ 6.67 × 10⁻¹¹ Nm²/kg²
M = 7217.66 × 10²⁶ kg
M = 7.21766 × 10²⁹ kg
M ≅ 7.22 × 10²⁹ kg
Why does a satellite in a circular orbit travel at a constant speed? why does a satellite in a circular orbit travel at a constant speed? there is a force acting opposite to the direction of the motion of the satellite. there is no component of force acting along the direction of motion of the satellite. the net force acting on the satellite is zero. the gravitational force acting on the satellite is balanced by the centrifugal force acting on the satellite?
..b.25
19-? Is the exact p.d across the 114-?resistor.
Current will different
But p.d will same in parallel circuit .
What r the answer choices? I'm
Answer:
The magnitude of each charge is 
Explanation:
Suppose the two point charges are separated by 6 cm. The attractive force between them is 20 N.
We need to calculate the magnitude of each charge
Using formula of force

Where, q = charge
r = separation
Put the value into the formula




Hence, The magnitude of each charge is 