1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Yuri [45]
3 years ago
9

With a frequency of 500 hz, what is the period of a wave

Physics
1 answer:
Pavlova-9 [17]3 years ago
5 0
<span>500 hz means 500 times in a second therefore its 2.</span>
You might be interested in
An instrument is thrown upward with a speed of 15 m/s on the surface of planet X where the acceleration due to gravity is 2.5 m/
Katen [24]
<h2>Answer: 12 s</h2>

Explanation:

The situation described here is parabolic movement. However, as we are told <u>the instrument is thrown upward</u> from the surface, we will only use the equations related to the Y axis.

In this sense, the main movement equation in the Y axis is:

y-y_{o}=V_{o}.t-\frac{1}{2}g.t^{2}    (1)

Where:

y  is the instrument's final position  

y_{o}=0  is the instrument's initial position

V_{o}=15m/s is the instrument's initial velocity

t is the time the parabolic movement lasts

g=2.5\frac{m}{s^{2}}  is the acceleration due to gravity at the surface of planet X.

As we know y_{o}=0  and y=0 when the object hits the ground, equation (1) is rewritten as:

0=V_{o}.t-\frac{1}{2}g.t^{2}    (2)

Finding t:

0=t(V_{o}-\frac{1}{2}g.t^{2})   (3)

t=\frac{2V_{o}}{g}   (4)

t=\frac{2(15m/s)}{2.5\frac{m}{s^{2}}}   (5)

Finally:

t=12s

3 0
3 years ago
A running mountain lion can make a leap 10.0 m long, reaching a maximum height of 3.0 m.?a.What is the speed of the mountain lio
Arisa [49]

Answer:

What is the speed of the mountain lion as it leaves the ground?

9.98m/s

At what angle does it leave the ground?

50.16°

Explanation:

This is going to be long, so if you want to see how it was solved refer to the attached solution. If you want to know the step by step process, read on.

To solve this, you will need use two kinematic equations and SOHCAHTOA:

d = v_it + \dfrac{1}{2}at^{2}\\\\vf = vi + at

With these formulas, we can derive formulas for everything you need:

Things you need to remember:

  • A projectile at an angle has a x-component (horizontal movement) and y-component (vertical movement), which is the reason why it creates an angle.
  • Treat them separately.
  • At maximum height, the vertical final velocity is always 0 m/s going up. And initial vertical velocity is 0 m/s going down.
  • Horizontal movement is not influenced by gravity.
  • acceleration due to gravity (a) on Earth is constant at 9.8m/s

First we need to take your given:

10.0 m long (horizontal) and maximum height of 3.0m (vertical).

d_x=10.0m\\d_y=3.0m

What your problem is looking for is the initial velocity and the angle it left the ground.

Vi = ?     Θ =?

Vi here is the diagonal movement and do solve this, we need both the horizontal velocity and the vertical velocity.

Let's deal with the vertical components first:

We can use the second kinematic equation given to solve for the vertical initial velocity but we are missing time. So we use the first kinematic equation to derive a formula for time.

d_y=V_i_yt+\dfrac{1}{2}at^{2}

Since it is at maximum height at this point, we can assume that the lion is already making its way down so the initial vertical velocity would be 0 m/s. So we can reduce the formula:

d_y=0+\dfrac{1}{2}at^{2}

d_y=\dfrac{1}{2}at^{2}

From here we can derive the formula of time:

t=\sqrt{\dfrac{2d_y}{a}}

Now we just plug in what we know:

t=\sqrt{\dfrac{(2)(3.0m}{9.8m/s^2}}\\t=0.782s

Now that we know the time it takes to get from the highest point to the ground. The time going up is equal to the time going down, so we can use this time to solve for the intial scenario of going up.

vf_y=vi_y+at

Remember that going up the vertical final velocity is 0m/s, and remember that gravity is always moving downwards so it is negative.

0m/s=vi_y+-9.8m/s^{2}(0.782s)\\-vi_y=-9.8m/s^{2}(0.782s)\\-vi_y=-7.66m/s\\vi_y=7.66m/s

So we have our first initial vertical velocity:

Viy = 7.66m/s

Next we solve for the horizontal velocity. We use the same kinematic formula but replace it with x components. Remember that gravity has no influence horizontally so a = 0:

d_x=V_i_xt+\dfrac{1}{2}0m/s^{2}(t^{2})\\d_x=V_i_xt

But horizontally, it considers the time of flight, from the time it was released and the time it hits the ground. Also, like mentioned earlier the time going up is the same as going down, so if we combine them the total time in flight will be twice the time.

T= 2t

T = 2 (0.782s)

<em>T = 1.564s</em>

<em>So we use this in our formula:</em>

<em>d_x=V_i_xT\\\\10.0m=Vi_x(1.564s)\\\\\dfrac{10.0m}{1.564s}=V_i_x\\\\6.39m/s=V_i_x</em>

Vix=6.39m/s

Now we have the horizontal and the vertical component, we can solve for the diagonal initial velocity, or the velocity the mountain lion leapt and the angle, by creating a right triangles, using vectors (see attached)

To get the diagonal, you just use the Pythagorean theorem:

c²=a²+b²

Using it in the context of our problem:

Vi^{2}=Viy^2+Vix^2\\Vi^2=(7.66m/s)^2+(6.39m/s)^2\\\sqrt{Vi}=\sqrt{(7.66m/s)^2+(6.39m/s)^2}\\\\Vi=9.98m/s

The lion leapt at 9.98m/s

Using SOHCAHTOA, we know that we can TOA to solve for the angle, because we have the opposite and adjacent side:

Tan\theta=\dfrac{O}{A}\\\\Tan\theta=\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{V_i_y}{V_i_x}\\\\\theta=Tan^{-1}\dfrac{7.66m/s}{6.39m/s}\\\\\theta=50.17

The lion leapt at an angle of 50.16°.

6 0
2 years ago
Suppose the acceleration of the particle moving gin a circle of radius "r" with the uniform speed "v" is proportional to some po
garik1379 [7]
So i say the power or the radius cortex in my equinox when i look at this V is the determination of V
5 0
2 years ago
What is four possible energy sources for a circuit
VashaNatasha [74]
<span>electric, solar, wind, and geothermal.</span>
8 0
3 years ago
Read 2 more answers
Two pool balls, each moving at 2 m/s, roll toward each other and collide. Suppose after bouncing apart, each moves at 2 m/s. Thi
stira [4]

Answer:D

Explanation:according to the law of conservation of energy/momentum, when two bodies collides, their total momentum and energy before and after collision are equal. Given that the two bodies move with the same velocities after collision, means that the law has not been violated since momentum = mass x velocity (where mass is constant)

4 0
3 years ago
Other questions:
  • The concentration of carbon monoxide in a sample of air is 8.1×10−6. There are ________ molecules of co in 1.00 l of this air at
    10·1 answer
  • during the spin dry cycle of a washing machine, the motor slows from 90 rad/s to 30 rad/s while turning the drum though an angle
    10·1 answer
  • Select all the correct answers.
    10·1 answer
  • Dr. gavin decides that instead of conducting a 2 ´ 4 independent-groups factorial design, he is going to conduct a 2 ´ 4 within-
    13·1 answer
  • How much energy will an electron gain if it moves through a potential difference of 1.0 V?
    13·1 answer
  • A 2.2 kgkg block slides along a frictionless surface at 1.2 m/sm/s . A second block, sliding at a faster 4.0 m/sm/s , collides w
    12·1 answer
  • An object is inside a room that has a constant temperature of 292 K. Via radiation, the object emits three times as much power a
    13·1 answer
  • When a metal element bonds with a non mental element they are known as ____ bond
    15·1 answer
  • If it takes you 20 joules of work to move a couch 10 meters in 10 seconds, what is the power?
    9·1 answer
  • Which of the following statements about trash in the United States is FALSE?
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!