Answer:
A. The period of an oscillation does not depend upon amplitude.
Explanation:
The period of a spring-mass system is:
T = 1/f = 2π√(m/k)
where f is the frequency, m is the mass, and k is the spring constant.
The answer isn't B. There are no frictionless systems in the real world.
The answer isn't C or D. As shown, the frequency is a function of both the mass and the spring constant.
The answer isn't E. Turning motion into heat is not an advantage for a clock.
The correct answer is A. The period of the system does not depend on the amplitude.
<span>A: It is not an exact representation of the atom, but is close enough to be very useful.
Hope this helps!</span>
The related concepts to solve this problem is the Glide Ratio. This can be defined as the product between the height of fall and the lift-to-drag ratio. Mathematically, this expression can be written as,

Replacing,


Converting this units to miles.


Therefore the glide in terms of distance measured along the ground is 7.2916miles
the color violet has the shortest wavelength!
Answer:
The angle is 
Explanation:
From the question we are told that
The mass is 
The radius is 
The speed is 
According to the law of energy conservation
The potential energy of the mass at the top is equal to the kinetic energy at the bottom i.e

=> 
Here h is the vertical distance traveled by the mass which is also mathematically represented as

So
![\theta = sin ^{-1} [ \frac{1}{2* g* r } * v^2]](https://tex.z-dn.net/?f=%5Ctheta%20%20%20%3D%20sin%20%5E%7B-1%7D%20%5B%20%5Cfrac%7B1%7D%7B2%2A%20g%2A%20r%20%7D%20%2A%20%20v%5E2%5D)
substituting values
![\theta = sin ^{-1} [ \frac{1}{2* 9.8* 1.1 } * (3.57)^2]](https://tex.z-dn.net/?f=%5Ctheta%20%20%20%3D%20sin%20%5E%7B-1%7D%20%5B%20%5Cfrac%7B1%7D%7B2%2A%209.8%2A%201.1%20%7D%20%2A%20%20%283.57%29%5E2%5D)
