There is one mistake in the question.The Correct question is here
A cat falls from a tree (with zero initial velocity) at time t = 0. How far does the cat fall between t = 1/2 and t = 1 s? Use Galileo's formula v(t) = −9.8t m/s.
Answer:
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Explanation:
Given data
time=1/2 sec to 1 sec
v(t)=-9.8t m/s
To find
Distance
Solution
As the acceleration as first derivative of velocity with respect to time
So
acceleration(-g)= dv/dt
Solve it
dv = a dt
dv = -g dt
v - v₀ = -gt
v= dy/dt
dy = v dt
dy = ( v₀ - gt ) dt
y(1s) - y(1/2s) = ( v₀ ) ( 1 - 1/2 ) - ( g/2 )[ ( t1)² -( t1/2s )² ]
y(1s) - y(1/2s) = ( - 9.8/2 ) [ ( 1 )² - ( 1/2 )² ]
y1s - y1/2s = ( - 4.9 m/s² ) ( 3/4 s² )
y(1s) - y(1/2s) = - 3.675 m
The cat falls 3.675 m between time 1/2 s and 1 s.
Answer:
the limbic system has its input and processing side (the limbic cortex, amygdala and hippocampus) and an output side (the septal nuclei and hypothalamus).
Explanation:
hope it helps
Answer:
Accelerating charges.
Explanation:
Electromagnetic waves are waves produced by the vibration of both electrical and magnetic fields.
This interaction produces an energy source that does not require any medium to propagate.
To produce electromagnetic waves, electric and magnetic fields must be vibrating.
An electric charge produced when vibrating under voltage will produce electromagnetic waves. This is the same for all sources of these waves.
The sun produces electromagnetic waves. A lot of human activities also does this.
Answer:
51 Ω.
Explanation:
We'll begin by calculating the equivalent resistance of R₁ and R₃. This can be obtained as follow:
Resistor 1 (R₁) = 40 Ω
Resistor 3 (R₃) = 70.8 Ω
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) =?
Since the two resistors are in parallel connection, their equivalent can be obtained as follow:
R₁ₙ₃ = R₁ × R₃ / R₁ + R₃
R₁ₙ₃ = 40 × 70.8 / 40 + 70.8
R₁ₙ₃ = 2832 / 110.8
R₁ₙ₃ = 25.6 Ω
Finally, we shall determine the equivalent resistance of the group. This can be obtained as follow:
Equivalent Resistance of R₁ and R₃ (R₁ₙ₃) = 25.6 Ω
Resistor 2 (R₂) = 25.4 Ω
Equivalent Resistance (Rₑq) =?
Rₑq = R₁ₙ₃ + R₂ (series connection)
Rₑq = 25.6 + 25.4
Rₑq = 51 Ω
Therefore, the equivalent resistance of the group is 51 Ω.