Answer:
Stable atom
Explanation:
A stable atom is one that has a balanced nuclear inter-particle force reaction as such the binding energy of a stable atom is sufficient to permanently keep the nucleus as one unit. Examples of a stable atom are the atoms of monoisotopic elements such as fluorine, sodium, iodine, gold, aluminium, and cobalt.
In a stable atom the expected number of proton, neutron, and electron are present while in an unstable atom or radioactive atom, there are more than the expected number of neutrons or protons, such that the internal energy of the nucleus is excessive and more than the binding energy, which can lead to radioactive decay.
The amount of heat needed to increase the temperature of a substance by

is given by

where m is the mass of the substance, Cs is its specific heat capacity and

is the increase of temperature.
If we re-arrange the formula, we get

And if we plug the data of the problem into the equation, we can find the specific heat capacity of the substance:
Answer:
hope this helps i think the answer is C
Explanation:
formula: <u>Mass</u>
Density x volume
2a) m=10kg v=0.3m³
10÷0.3=33.3 kg/m
2b) m = 160 kg V=0.1m³
160÷0.1=1600 kg/m
2c) m = 220 kg V = 0.02m³
220÷0.02=11000 kg/m
A wooden post has a volume of 0.025m³ and a mass of 20kg. Calculate its density in kg/m.
density = volume ÷ mass
20÷ 0.025=800 kg/m
Challenge: A rectangular concrete slab is 0.80m long, 0.60 m wide and 0.04m thick. Calculate its volume in m³.
Formula : Length x width x height = Volume
0.80 x 0.60 x 0.04 = 0.0192m³
B) The mass of the concrete slab is 180 kg. Calculate its density in kg/m.
density = volume ÷ mass
180 ÷ 0.0192 = 9375 kg/m
Answer:
They generate energy through hydrogen fusion in their core.
Explanation:
hope this helps :)