Answer:

Explanation:
According to the law of conservation of linear momentum, the total momentum of both pucks won't be changed regardless of their interaction if no external forces are acting on the system.
Being
and
the masses of pucks a and b respectively, the initial momentum of the system is

Since b is initially at rest

After the collision and being
and
the respective velocities, the total momentum is

Both momentums are equal, thus
Solving for 


The initial kinetic energy can be found as (provided puck b is at rest)


The final kinetic energy is


The change of kinetic energy is

Answer:
It takes millions sometimes hundreds of millions Explanation:
Explanation:
003 (part 1 of 2)
Pressure is force divided by area.
P = F / A
P = (117 kg × 9.8 m/s²) / (2 × (0.05 m)²)
P = 229,320 Pa
003 (part 2 of 2)
There are approximately 6895 Pa in 1 psi.
P = 229,320 Pa × (1 psi / 6895 Pa)
P = 33.3 psi
004 (part 1 of 2)
Since the collisions are elastic, the angle of reflection is the same as the angle of incidence (it bounces off at the same angle).
Impulse = change in momentum
F Δt = m Δv
F (36 s) = (300 × 0.003 kg) (5.2 sin 57° m/s − (-5.2 sin 57° m/s))
F = 0.218 N
004 (part 2 of 2)
Pressure is force over area.
P = F / A
P = 0.218 N / 0.712 m²
P = 0.306 N/m²
half-life? what do you mean
Answer: Increase in competition for abiotic factors.
Explanation: Resource availability is one of the main factors determining the ecological dynamics of populations or species. Fluctuations in resource availability can increase or decrease the intensity of resource competition. Resource availability and competition can also cause evolutionary changes in life-history traits