It’s E cause water when it freezes it expands and water flows down
Ans: R = Ball Travelled = 92.15 meters.
Explanation:
First we need to derive that formula for the "range" in order to know how far the ball traveled before hitting the ground.
Along x-axis, equation would be:

Since there is no acceleration along x-direction; therefore,

Since

and

=0; therefore above equation becomes,

--- (A)
Now we need to find "t", and the time is not given. In order to do so, we shall use the y-direction motion equation. Before hitting the ground y ≈ 0 and a = -g; therefore,
=>

=>

Since

; therefore above equation becomes,

Put the value of t in equation (A):
(A) =>

Where x = Range = R, and

; therefore above equation becomes:
=>

Now, as:

and

°
and g = 9.8 m/(s^2)
Hence,
Ans: R = 92.15 meters.-i
The work done in lifting the hamburger is equal to the increase in gravitational potential energy of the hamburger, given by

where
m=0.1 kg is the mass of the hamburger
is the gravitational acceleration
is the increase in height of the hamburger
Substituting numbers into the equation, we find

So, the correct answer is
(3) 0.3 J
The second diver have to leap to make a competitive splash by 4.08 m high.
<h3>What is potential energy?</h3>
The energy by virtue of its position is called the potential energy.
PE = mgh
where, g = 9.81 m/s²
Given is the diver jumps from a 3.00-m platform. one diver has a mass of 136 kg and simply steps off the platform. another diver has a mass of 100 kg and leaps upward from the platform.
The potential energy of the first diver must be equal to the second diver.
P.E₁ = P.E₂
m₁gh₁ = m₂gh₂
Substitute the vales, we have
136 x 3 = 100 x h₂
h₂ = ₂4.08 m
Thus, the second diver need to leap by 4.08 m high.
Learn more about potential energy.
brainly.com/question/24284560
#SPJ1
Explanation:
Period of a mass on a spring is:
T = 2π√(m/k)
T is inversely proportional with the square root of k. So as the spring constant increases, the period decreases.