Kepler's first law - sometimes referred to as the law of ellipses - explains that planets are orbiting the sun in a path described as an ellipse. An ellipse can easily be constructed using a pencil, two tacks, a string, a sheet of paper and a piece of cardboard. Tack the sheet of paper to the cardboard using the two tacks. Then tie the string into a loop and wrap the loop around the two tacks. Take your pencil and pull the string until the pencil and two tacks make a triangle (see diagram at the right). Then begin to trace out a path with the pencil, keeping the string wrapped tightly around the tacks. The resulting shape will be an ellipse. An ellipse is a special curve in which the sum of the distances from every point on the curve to two other points is a constant. The two other points (represented here by the tack locations) are known as the foci of the ellipse. The closer together that these points are, the more closely that the ellipse resembles the shape of a circle. In fact, a circle is the special case of an ellipse in which the two foci are at the same location. Kepler's first law is rather simple - all planets orbit the sun in a path that resembles an ellipse, with the sun being located at one of the foci of that ellipse.
Think of it like this, gravity has to pull harder on the heavier object to make them fall at the same rate , but doesn't have to pull as hard for the lighter object , thus is why sometimes heavier objects fall faster then lighter ones
Answer:
619.8 N
Explanation:
The tension in the string provides the centripetal force that keeps the rock in circular motion, so we can write:

where
T is the tension
m is the mass of the rock
v is the speed
r is the radius of the circular path
At the beginning,
T = 50.4 N
v = 21.1 m/s
r = 2.51 m
So we can use the equation to find the mass of the rock:

Later, the radius of the string is decreased to
r' = 1.22 m
While the speed is increased to
v' = 51.6 m/s
Substituting these new data into the equation, we find the tension at which the string breaks:

Answer:

Explanation:
According to given:
- molecular mass of glycerin,

- molecular mass of water,

- ∵Density of water is

- ∴mass of water in 316 mL,

- mass of glycerin,

- pressure of mixture,

- temperature of mixture,

<em>Upon the formation of solution the vapour pressure will be reduced since we have one component of solution as non-volatile.</em>
<u>moles of water in the given quantity:</u>



<u>moles of glycerin in the given quantity:</u>



<u>Now the mole fraction of water:</u>



<em>Since glycerin is non-volatile in nature so the vapor pressure of the resulting solution will be due to water only.</em>



Answer:
La motocicleta recorre 25 metros en 1 segundo si circula a una velocidad de 90 km/h
Explanation:
La velocidad es una magnitud que expresa el desplazamiento que realiza un objeto en una unidad determinada de tiempo, esto es, relaciona el cambio de posición (o desplazamiento) con el tiempo.
Siendo la velocidad es el espacio recorrido en un período de tiempo determinado, entonces 90 km/h indica que en 1 hora la motocicleta recorre 90 km. Entonces, siendo 1 h= 3600 segundos (1 h=60 minutos y 1 minuto=60 segundos) podes aplicar la siguiente regla de tres: si en 3600 segundos (1 hora) la motocicleta recorre 90 km, entonces en 1 segundo ¿cuánta distancia recorrerá?

distancia= 0.025 km
Por otro lado, aplicas la siguiente regla de tres: si 1 km es igual a 1,000 metros, ¿0.025 km cuántos metros son?

distancia= 25 metros
<u><em>La motocicleta recorre 25 metros en 1 segundo si circula a una velocidad de 90 km/h</em></u>