Answer:
0.0321 g
Explanation:
Let helium specific heat 
Assuming no energy is lost in the process, by the law of energy conservation we can state that the 20J work done is from the heat transfer to heat it up from 273K to 393K, which is a difference of ΔT = 393 - 273 = 120 K. We have the following heat transfer equation:

where  is the mass of helium, which we are looking for:
 is the mass of helium, which we are looking for:

 
        
             
        
        
        
Answer:
A
Explanation:
Resistors in series add. There is only one path the current can take. That's why Christmas Tree lights sometimes give a lot of trouble. If a bulb burns out, it could be any one of them and time is needed to find the burned out bulb.
That being the case R = R1 + R2
R1 = 50 ohms
R2 = 50 ohms
R = 50 + 50
R = 100 ohms
Answer A
 
        
                    
             
        
        
        
Answer:
It conserves both energy and momentum in the collision at the same time. By design, when the balls collide the strings that hold them up are vertical (assuming balls are only swung from one side).
Explanation:
Hope This Helps!!
 
        
             
        
        
        
The pressure drop in pascal is 3.824*10^4 Pascals.
To find the answer, we need to know about the Poiseuille's formula.
<h3>How to find the pressure drop in pascal?</h3>
- We have the Poiseuille's formula,
                      
- where, Q is the rate of flow, P is the pressure drop, r is the radius of the pipe, is the coefficient of viscosity (0.95Pas-s for Glycerin) and l being the length of the tube.
- By substituting values and rearranging we will get the pressure drop as,
                   
Thus, we can conclude that, the pressure drop in pascal is 3.824*10^4.
Learn more about the Poiseuille's formula here:
brainly.com/question/13180459
#SPJ4