- A 16.0 kg canoe moving to the left at 12.5 m/s makes an elastic head on collision with a 14.0 kg raft moving to the right at 16.0 m/s.
- After the collision the raft moves to the left at 14.4 m/s assuming water simulates a frictionless surface.
- Mass of the canoe (m1) = 16 Kg
- Mass of the raft (m2) = 14 Kg
- Initial velocity of the canoe (u1) = 12.5 m/s
- Initial velocity of the raft (u1) = - 16 m/s [Here, the raft's velocity is negative, because the objects are moving in the opposite direction]
- Total momentum of the system = m1u1 + m2u2 = [(16 × 12.5) + (14 × -16)] Kg m/s = (200 - 224) Kg m/s = -24 Kg m/s
- Final velocity of the raft (v2) = 14.4 m/s
- Let the final velocity of the canoe be v1.
- Total momentum of the system after the impact = m1v1 + m2v2 = [(16 × v1) + (14 × 14.4)] Kg m/s = 16v1 Kg + 201.6 Kg m/s
- According to the law of conservation of momentum, Total momentum of the system before the impact = Total momentum of the system after the impact
- or, -24 Kg m/s = 16v1 Kg + 201.6 Kg m/s
- or, -24 Kg m/s - 201.6 Kg m/s = 16v1 Kg
- or, -225.6 Kg m/s = 16v1 Kg
- or, v1 = -225.6 Kg m/s ÷ 16 Kg
- or, v1 = -14.1 m/s
<u>Answer:</u>
<u>T</u><u>he final velocity of the </u><u>canoe </u><u>is </u><u>-</u><u>1</u><u>4</u><u>.</u><u>1</u><u> </u><u>m/</u><u>s </u><u>or </u><u>1</u><u>4</u><u>.</u><u>1</u><u> </u><u>m/</u><u>s </u><u>to </u><u>the </u><u>right.</u>
Hope you could get an idea from here.
Doubt clarification - use comment section.
Answer:
"Motion is the act of moving or changing position. When studying motion there are many factors to look at. The main factors of motion revolve around force, speed, velocity, acceleration, and an object's mass".
Explanation:
*Hope this helps*
Time and space are both relative
Answer:
accelerated
Explanation:
The motion of the body where the acceleration is constant is known as uniformly accelerated motion. The value of the acceleration does not change with the function of time.