Answer:
Explanation:
ACCORDING TO NEWTONS SECOND LAW;
F = mass * acceleration
F = m(v-u/t)
m is the mass = 0.15kg
v is the final velocity = 11m/s
u is the initial velocity = 0m/s
t is the time = 0.015
Substitute;
F = 0.15(11-0)/0.015
F = 0.15(11)/0.015
F = 1.65/0.015
F = 110N
Hence the net force is 110N
6 is b. part B on 6 is a. 7 is a. partB ON 7 b
Consider that the bar magnet has a magnetic field that is acting around it, which will imply that there is a change in the magnetic flux through the loop whenever it moves towards the conducting loop. This could be described as an induction of the electromotive Force in the circuit from Faraday's law.
In turn by Lenz's law, said electromotive force opposes the change in the magnetic flux of the circuit. Therefore, there is a force that opposes the movement of the bar magnet through the conductor loop. Therefore, the bar magnet does not suffer free fall motion.
The bar magnet does not move as a freely falling object.
Answer
aim directly at the image
Explanation
the light from the laser beam will also bend when it hits the air water interface , so aim directly at the fish
Answer:
Torque decreases .
Explanation:
The tape is pulled at constant speed , speed v is constant , so there is
v = ω r where ω is angular speed and r is radius , As radius decreases , angular speed ω increases , So there is angular acceleration .
Let it be α . Let I be moment of inertia of reel .
Reel is in the form of disc
I = 1/2 m r²
I x α = torque
1/2 m r² x α = torque
As the reel is untapped , its mass decreases , r also decreases , so torques also decreases .