1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BaLLatris [955]
3 years ago
15

A layer of oil (n = 1.38) floats on an unknown liquid. A ray of light originates in the oil and passes into the unknown liquid.

The angle of incidence is 65.0°, and the angle of refraction is 53.0°. What is the index of refraction of the unknown liquid?
Physics
1 answer:
Vinil7 [7]3 years ago
4 0

Answer:

Refractive index of unknown liquid = 1.56

Explanation:

Using Snell's law as:

n_i\times {sin\theta_i}={n_r}\times{sin\theta_r}

Where,  

{\theta_i}  is the angle of incidence  ( 65.0° )

{\theta_r} is the angle of refraction  ( 53.0° )

{n_r} is the refractive index of the refraction medium  (unknown liquid, n=?)

{n_i} is the refractive index of the incidence medium (oil, n=1.38)

Hence,  

1.38\times {sin65.0^0}={n_r}\times{sin53.0^0}

Solving for {n_r},

Refractive index of unknown liquid = 1.56

You might be interested in
Two forces, one of 100 ponds and the other 150 pounds act on the same object, at angles of 20°and 60°, respectively, withthe pos
soldi70 [24.7K]
<h2>Resultant is 235.54 pounds at an angle 44.16° to X axis.</h2>

Explanation:

Forces are 100 pound and 150 pound and angles with x axis are 20°and 60°.

That is force 1 is 100 pound with x axis at 20°

           F₁ = 100 cos 20 i  +  100 sin 20 j

           F₁ = 93.97 i  +  34.20 j          

That is force 2 is 150 pound with x axis at 60°

           F₂ = 150 cos 60 i  +  150 sin 60 j

           F₂ = 75 i  +  129.90 j  

F₁ +  F₂ =  93.97 i  +  34.20 j + 75 i  +  129.90 j

F₁ +  F₂ =  168.97 i  +  164.10 j

\texttt{Magnitude = }\sqrt{168.97^2+164.10^2}\\\\\texttt{Magnitude = }235.54pounds\\\\\texttt{Angle = }tan^{-1}\left ( \frac{164.10}{168.97}\right )\\\\\texttt{Angle = }44.16^0

Resultant is 235.54 pounds at an angle 44.16° to X axis.

6 0
3 years ago
Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
AlexFokin [52]

Answer:

0.56 atm

Explanation:

First of all, we need to find the number of moles of the gas.

We know that

m = 1.00 g is the mass of the gas

Mm=44.0 g/mol is the molar mass of the carbon dioxide

So, the number of moles of the gas is

n=\frac{m}{M_m}=\frac{1.00 g}{44.0 g/mol}=0.023 mol

Now we can find the pressure of the gas by using the ideal gas equation:

pV=nRT

where

p is the pressure

V=1.00 L = 0.001 m^3 is the volume

n = 0.023 mol is the number of moles

R=8.314 J/mol K is the gas constant

T=25.0^{\circ}+273=298 K is the temperature of the gas

Solving the equation for p, we find

p=\frac{nRT}{V}=\frac{(0.023 mol)(8.314 J/mol K)(298 K)}{0.001 m^3}=5.7 \cdot 10^4 Pa

And since we have

1 atm = 1.01\cdot 10^5 Pa

the pressure in atmospheres is

p=\frac{5.7\cdot 10^4 Pa}{1.01\cdot 10^5 Pa/atm}=0.56 atm

5 0
3 years ago
What instrument measures air temperature?
zavuch27 [327]
Its a thermometer . i hope this helps you
5 0
3 years ago
Lightning produces a maximum air temperature on the order of 104K, whereas a nuclear explosion produces a temperature on the ord
gtnhenbr [62]

Answer:

tex]2.898\times 10^{-7}\ \text{m}[/tex] ultraviolet region

2.898\times 10^{-10}\ \text{m} x-ray region

Explanation:

T = Temperature

b = Constant of proportionality = 2.898\times 10^{-3}\ \text{m K}

\lambda = Wavelength

T=10^4\ \text{K}

From Wein's law we have

\lambda=\dfrac{b}{T}\\\Rightarrow \lambda=\dfrac{2.898\times 10^{-3}}{10^4}\\\Rightarrow \lambda=2.898\times 10^{-7}\ \text{m}

The wavelength of the radiation will be 2.898\times 10^{-7}\ \text{m} and it is in the ultraviolet region.

T=10^7\ \text{K}

\lambda=\dfrac{2.898\times 10^{-3}}{10^7}\\\Rightarrow \lambda=2.898\times 10^{-10}\ \text{m}

The wavelength of the radiation will be 2.898\times 10^{-10}\ \text{m} and it is in the x-ray region.

5 0
3 years ago
1. Which statement about subatomic particles is not true?
igomit [66]

1. Protons and neutrons have the same charge.

Protons have positive charge, equal to e=+1.6\cdot 10^{-19} C, while neutrons have zero charge.

2. mass number

The mass number of an atom is equal to the sum of protons and neutrons inside its nucleus.

3. Atoms are made up of smaller particles.

According to Dalton's theory, atoms are the smallest particles that make matter, and they are indivisible and indestructible, so they are NOT made up of smaller particles.

4. a solid sphere

In Dalton's theory, atoms are not made of smaller particles, so we can think them as solid spheres.

5. J. J. Thomson

In his experiment with cathode ray tubes, JJ Thomson demonstrated the existance of the electrons, which are negatively charged particles inside the atom. In his model of the atom (plum-pudding model), Thomson thought the atom consists of a uniform positive charge and the electrons are located inside this positive charge.

6. An electron has the same amount of energy in all orbitals.

In fact, each orbital corresponds to a different energy level: the farther the orbital from the nucleus, the higher the energy of the electrons contained in that orbital.

7. A hydrogen atom in heavy water has an extra neutron.

Heavy water is a type of water that contains deuterium, which is an isotope of the hydrogen consisting of one proton and one neutron (so, one extra neutron).

8. The glowing beam was always deflected by charged plates

In his cathode's ray tube experiment, Thomson shows that the beam of unknown particles (= the electrons) were deflected by charge plates, so the particles had to be also electrically charged.

9. electrons move to a lower energy level

When electrons move from a higher energy level to a lower energy, they emit a photon (light) of energy equal to the difference in energy between the two energy levels.

10. orbital

In quantum mechanics, electrons in the atom are not precisely located, since we cannot determine their exact position and velocity at the same time. Therefore, we can only describe regions of space where the electrons have a certain probability to be found, and these regions of space are called orbitals.

11. 14

According to Dalton's theory, the proportions of the reactants must be respected in order to form the same compound. Therefore, we can write:

2 g: 4 g = X : 28 g\\X=\frac{2 g \cdot 28 g}{4 g}=14 g

12. negative charge, found outside the nucleus

Electrons are particles with negative charge of magnitude e=-1.6\cdot 10^{-19}C that orbit around the nucleus. The nucleus, instead, consists of protons (positively charged, with charge opposite to the electron) and neutrons (neutrally charged).

13. move from higher to lower energy levels

When electrons move from a higher energy level to a lower energy inside a neon atom, they emit a photon (which is light) whose energy is equal to the difference in energy between the two energy levels.

14. atomic number from its mass number

In fact:

- the atomic number of an atom (Z) is equal to the number of protons inside the nucleus

- the mass number of an atom (A) is equal to the sum of protons+neutrons inside the nucleus

Therefore, we can find the number of neutrons in the nucleus by calculating the difference between A and Z:

Number of neutrons = A - Z

15. None of them

None of these examples is a good analogy to describe the location of an electron in an atomic orbital: in fact, the position of an electron in an orbital cannot be precisely described, we can only describe the probability to find the electron in a certain position, and none of these example is an analogy of this model.

8 0
3 years ago
Other questions:
  • What would you do to improve the precision of an experiment?
    5·2 answers
  • What are the 3 parts of an atom and give the electric charge of each
    13·1 answer
  • Arrange the balls in order from greatest amount of gravitational potential energy to least
    6·2 answers
  • ______ Is the degree of exactness of a measurement; _____ Describes how well the results of measurement agree with the real valu
    6·2 answers
  • (HELP QUICK!!) Air pressure is a result of _____
    6·2 answers
  • ____________ is an out made when a base runner, forced to run because another teammate must run to the base being occupied, cann
    5·1 answer
  • The United States and South Korean soccer teams are playing in the first round of the World Cup. An American kicks the ball, giv
    13·1 answer
  • What are some common positive and negative attitudes toward physical activities? What
    11·1 answer
  • When a speeding truck hits a stationary car, the car is deformed and heat is generated. What can you say about the kinetic energ
    10·1 answer
  • compare and contrast the excited state and the ground state of electrons. please use proper grammar and mechanics.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!