Heat equation, Q = m.c.Δt
Here, c represents " the specific heat of the substance "
Hope this helps!
3.39 x 10^-13
Please mark brainliest!
Answer:
Time, t = 6.34 hours.
Explanation:
Velocity can be defined as the rate of change in displacement (distance) with time. Velocity is a vector quantity and as such it has both magnitude and direction.
Mathematically, velocity is given by the equation;

Therefore, making time the subject of formula;

Given the following data;
Displacement = 5200km
Average velocity = 820km/hr
Substituting into the equation, we have;

Time = 6.34 hours.
<em>Hence, it would take 6.34 hours for the airplane to reach its destination. </em>
Answer:
You input potential (stored) energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this kind of potential energy is specifically called elastic potential energy. ... When the rubber band is released, the potential energy is quickly converted to kinetic (motion) energy.
Explanation:
Answer:
(a) Kav Ne = Kav Kr = 7.29x10⁻²¹J
(b) v(rms) Ne= 659.6m/s and v(rms) Kr= 323.7m/s
Explanation:
(a) According to the kinetic theory of gases the average kinetic energy of the gases can be calculated by:
(1)
<em>where
: is the kinetic energy, k: Boltzmann constant = 1.38x10⁻²³J/K, and T: is the temperature </em>
<u>From equation (1), we can calculate the</u><u> average kinetic energies for the krypton and the neon:</u>
(b) The rms speeds of the gases can be calculated by:
<em>where m: is the mass of the gases and
: is the root mean square speed of the gases</em>
For the neon:
For the krypton:
Have a nice day!