Because of the pole and the generator you would have to biuld
Fundamental frequency,
f=v2l=T/μ−−−−√2l
=(50)/0.1×10−3/10−22×0.6−−−−−−−−−−−−−−−−−−−√
=58.96Hz
Let, n th harmonic is the hightest frequency, then
(58.93)n = 20000
∴N=339.38
Hence, 339 is the highest frequency.
∴fmax=(339)(58.93)Hz=19977Hz.
<h3>
What is frequency?</h3>
In physics, frequency is the number of waves that pass a given point in a unit of time as well as the number of cycles or vibrations that a body in periodic motion experiences in a unit of time. After moving through a sequence of situations or locations and then returning to its initial position, a body in periodic motion is said to have experienced one cycle or one vibration. See also simple harmonic motion and angular velocity.
learn more about frequency refer:
brainly.com/question/254161
#SPJ4
To develop this problem it is necessary to apply the concepts given in the balance of forces for the tangential force and the centripetal force. An easy way to detail this problem is through a free body diagram that describes the behavior of the body and the forces to which it is subject.
PART A) Normal Force.


Here,
Normal reaction of the ring is N and velocity of the ring is v




PART B) Acceleration





Negative symbol indicates deceleration.
<em>NOTE: For the problem, the graph in which the turning radius and the angle of suspension was specified was not supplied. A graphic that matches the description given by the problem is attached.</em>
Answer:
F = 47.6 N
Explanation:
- Newton's 2nd law can be expressed as the rate of change of the total momentum, respect of time, as follows:

- So, in order to find the average force exerted by the skater on the wall, we can find the change in momentum due to the force exerted by the wall (which is equal and opposite to the one exerted by the skater), and divide it by the time interval , as follows:

⇒ Fsk = 47.6 N (normal to the wall)