Answer:
0.3793 M
Explanation:
The unknown metal is zinc. So the equation of the reaction is;
Zn(s) + Cu^2+(aq) -------> Zn^2+(aq) + Cu(s)
From Nernst equation;
E = E° - 0.0592/n log Q
[Cu2+] = 0.050179 M
n = 2
[Zn^2+] = ?
E = 1.074 V
E° = 0.34 - (-0.76) = 1.1 V
Substituting values;
1.074 = 1.1 - 0.0592/2 log [Zn^2+]/0.050179
1.074 - 1.1 = - 0.0592/2 log [Zn^2+]/0.050179
-0.026 = -0.0296 log [Zn^2+]/0.050179
-0.026/-0.0296 = log [Zn^2+]/0.050179
0.8784 =log [Zn^2+]/0.050179
Antilog(0.8784) = [Zn^2+]/0.050179
7.558 = [Zn^2+]/0.050179
[Zn^2+] = 7.558 * 0.050179
[Zn^2+] = 0.3793 M
Answer:
A
Explanation:
Recall that Δ<em>H</em> is the sum of the heats of formation of the products minus the heat of formation of the reactants multiplied by their respective coefficients. That is:

Therefore, from the chemical equation, we have that:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) = \left[\Delta H^\circ_f \text{ N$_2$H$_4$} + \Delta H^\circ_f \text{ H$_2$O} \right] -\left[3 \Delta H^\circ_f \text{ H$_2$}+\Delta H^\circ_f \text{ N$_2$O}\right] \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%3D%20%5Cleft%5B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24O%7D%20%20%5Cright%5D%20%20%20-%5Cleft%5B3%20%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20H%24_2%24%7D%2B%5CDelta%20H%5E%5Ccirc_f%20%5Ctext%7B%20N%24_2%24O%7D%5Cright%5D%20%5Cend%7Baligned%7D)
Remember that the heat of formation of pure elements (e.g. H₂) are zero. Substitute in known values and solve for hydrazine:
![\displaystyle \begin{aligned} (-317\text{ kJ/mol}) & = \left[ \Delta H^\circ _f \text{ N$_2$H$_4$} + (-285.8\text{ kJ/mol})\right] -\left[ 3(0) + (82.1\text{ kJ/mol})\right] \\ \\ \Delta H^\circ _f \text{ N$_2$H$_4$} & = (-317 + 285.8 + 82.1)\text{ kJ/mol} \\ \\ & = 50.9\text{ kJ/mol} \end{aligned}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cbegin%7Baligned%7D%20%28-317%5Ctext%7B%20kJ%2Fmol%7D%29%20%26%20%3D%20%5Cleft%5B%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%2B%20%28-285.8%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20-%5Cleft%5B%203%280%29%20%2B%20%2882.1%5Ctext%7B%20kJ%2Fmol%7D%29%5Cright%5D%20%5C%5C%20%5C%5C%20%5CDelta%20H%5E%5Ccirc%20_f%20%5Ctext%7B%20N%24_2%24H%24_4%24%7D%20%26%20%3D%20%28-317%20%2B%20285.8%20%2B%2082.1%29%5Ctext%7B%20kJ%2Fmol%7D%20%5C%5C%20%5C%5C%20%26%20%3D%2050.9%5Ctext%7B%20kJ%2Fmol%7D%20%5Cend%7Baligned%7D)
In conclusion, our answer is A.
Answer:
K₂CO₃
Explanation:
Given parameters:
Number of moles of K = 0.104mol
Number of moles of C = 0.052mol
Number of moles of O = 0.156mol
Method
From the given parameters, to calculate the empirical formula of the elements K, C and O, we reduce the given moles to the simplest fraction.
Empirical formula is the simplest formula of a compound and it differs from the molecular formula which is the actual formula of a compound.
- Divide the given moles through by the smallest which is C, 0.052mol.
- Then approximate values obtained to the nearest whole number of multiply by a factor to give a whole number ratio.
- This is the empirical formula
Solution
Elements K C O
Number of moles 0.104 0.052 0.156
Dividing by the
smallest 0.104/0.052 0.052/0.052 0.156/0.052
2 1 3
The empirical formula is K₂CO₃