Answer & explanation:
SI units are the metric system and the most commonly used measurement system in the world. Some examples of these units you may find around your home are:
Pencil lead size measured in millimeters. (Ex. 0.7mm)
Microwaves, you put your food in for a number of seconds. Any other device used to time things also does this, such as a stopwatch.
A ruler or tape measure will measures in centimeters or meters usually.
A balance or scale may be used to measure mass in grams.
Solid products like antiperspirant, lipstick and other solid makeup products are usually measured in grams.
Solid foods such as butter are usually measured in grams.
Information about the contents of food found on the nutrition facts label are usually measured in grams or milligrams. (Ex. 3g of saturated fat)
To determine the cost of the mercury per cubic inch, we need to divide the total cost with the total volume in units of cubic inches. To do this, we first determine the volume of the mercury given the mass and the density. In any operation, it is important to remember that the units of the values involved should be homogeneous so that we can cancel them. We do as follows:
mass of mercury = 76 lb ( 1 kg / 2.2 lbs ) ( 1000 g / 1 kg ) = 34545.45 g
volume of mercury in cm^3 = 34545.45 g / 13.534 g / cm^3 = 2552.49 cm^3
We need to convert this to units of cubic inches since it is what is asked.
volume of mercury in in^3 = 2552.49 cm^3 ( 1 in / 2.54 cm )^3 = 155.76 in^3
cost per in^3 = $126 / 155.76 in^3 = $ 0.809 / in^3
Answer:
.
Explanation:
Magnesium chloride and silver nitrate reacts at a
ratio:
.
In reality, the nitrate ion from silver nitrate did not take part in this reaction at all. Consider the ionic equation for this very reaction:
.
The precipitate silver chloride
is insoluble in water and barely ionizes. Hence,
isn't rewritten as ions.
Net ionic equation:
.
Calculate the initial quantity of nitrate ions in the mixture.
.
Since nitrate ions
do not take part in any reaction in this mixture, the quantity of this ion would stay the same.
.
However, the volume of the new solution is twice that of the original nitrate solution. Hence, the concentration of nitrate ions in the new solution would be
of the concentration in the original solution.
.
Answer: 14.3%Explanation: In order to find the mass percent of hydrogen in this compound, you must determine how many grams of hydrogen you'd get in 100 g of compound.
In your case, you know that an unknown mass of hydrogen reacts with 0.771 g of carbon to form 0.90 g of hydrocarbon, which is a compound that contains only carbon and hydrogen.
Use the total mass of the hydrocarbon to determine how many grams of hydrogen reacted with the carbon.
Now, if 0.90 g of this compound contain 0.129 g of hydrogen, it follows that 100 g of this compound will contain.
So, if 100 g of this compound contain 14.33 g of hydrogen, it follows that the mass percent of hydrogen is 14.3%
<span><span><span><span><span><span><span><span><span /></span></span></span></span></span></span></span></span><span><span>
</span></span>