I believe that if you touch a metal sphere with a plastic straw, the straw would not have enough strength to push it. So in that case, the metal sphere will not move and will stay in one place.
Please rate a 5 star
Correct order, from lowest potential energy to highest potential energy:
E - C - D - B - A
Explanation:
The gravitational potential energy of the car is given by:

where
m is the car's mass
g is the gravitational acceleration
h is the height of the car relative to the ground
In the formula, we see that m and g are constant, so the potential energy of the car depends only on its height above the ground, h. The higher the car from the ground, the larger its potential energy. Therefore, the position with least potential energy will be E, since the height is the minimum. Then, C will have more potential energy, because the car is at higher position, and so on: the position with greatest potential energy is A, because the height of the car is maximum.
Answer:
Solution
Verified by Toppr
Correct option is
C
3 cm
RI=apparent depthreal depth
Substituting, 34=apparentdepth12
Therefore, apparent depth=412×3=9
The height by which it appears to be raised is 12−9=3cm
Was this answer helpful?
71
0
SIMILAR QUESTIONS
A coin is placed at the bottom of a glass tumbler and then water is added. It appeared that the depth of the coin has been reduced because
Medium
View solution
>
A tank is filled with water to a height of 12.5 cm. The apparent depth of a needle lying at the bottom of the tank is measured by a microscope to be 9.4 cm. What is the refractive index of water? If water is replaced by a liquid of refractive index 1.63 up to the same height, by what distance would the microscope have to be moved to focus on the needle again?
Answer:
the velocity of the bullet-wood system after the collision is 2.48 m/s
Explanation:
Given;
mass of the bullet, m₀ = 20 g = 0.02 kg
velocity of the bullet, v₀ = 250 m/s
mass of the wood, m₁ = 2 kg
velocity of the wood, v₁ = 0
Let the velocity of the bullet-wood system after collision = v
Apply the principle of conservation of linear momentum to calculate the final velocity of the system;
Initial momentum = final momentum
m₀v₀ + m₁v₁ = v(m₀ + m₁)
0.02 x 250 + 2 x 0 = v(2 + 0.02)
5 + 0 = v(2.02)
5 = 2.02v
v = 5/2.02
v = 2.48 m/s
Therefore, the velocity of the bullet-wood system after the collision is 2.48 m/s