Answer:
T = 0.0088 m²/s
Explanation:
given,
initial piezometric elevation = 12.5 m
thickness of aquifer = 14 m
discharge = 28.24 L/s = 0.02824 m³/s
we know

k = 0.629 mm/sec
Transmissibilty
T = k × H
T = 0.629 × 14 × 10⁻³
T = 0.0088 m²/s
Answer:
Mass – The single most important property that determines other properties of the star. Luminosity – The total amount of energy (light) that a star emits into space. Temperature – surface temperature, closely related to the luminosity and color of the star
Explanation:
Answer:
0 J
Explanation:
Kinetic energy is defined as:
KE = 1/2 m v²
where m is mass and v is velocity.
The car starts at rest, so it has zero velocity. Therefore, its initial kinetic energy is 0 J.
Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:

Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=

Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=
Now, the relation between energies ratio and masses is:



Volume by Displacement. The displacement method (submersion, or dunking method) can be used to accurately measure the volume of the human body and other oddly shaped objects by measuring the volume of fluid displaced when the object is submerged.
The following precautions should be taken very observantly:-
The line of sight must be perpendicular to measuring scale to avoid parallax error. Formation of bubbles inside the cylinder should be completely avoided. Any bubbles within leads to wrong measurements.