Answer:
Explanation:
In optics, the refractive index of a material is a dimensionless number that describes how fast light travels through the material. It is defined as where c is the speed of light in vacuum and v is the phase velocity of light in the medium or for short the ratio of the velocity of light in a vacuum to its velocity in a specified medium.
Answer:
The answer to your question is: F = 50 N
Explanation:
Data
mass = 1000 kg
acceleration = 0.05m/s2
F = ?
Formula
F = m x a
Substitution
F = 1000 kg x 0.05 m/s2 = 50 kgm/s2 = 50 N
Mike is applying a force of 50 N to the car.
Answer:
a)
b) 
Explanation:
The complete question is written below:
An emu moving with constant acceleration covers the distance between two points that are 92 m apart in 6.5s. Its speed as it passes the second point is 14 m/s. What are (a) its speed at the first point and (b) its acceleration?
Since we are talking about constant acceleration, we can use the following equations:
(1)
(2)
Where:
is the distance between the two points
is the velocity of the emu at the first point
is the velocity of the emu at the second point
is the time it takes to the emu to cover the distance
is the emu's constant acceleration
Knowing this, let's begin with the answers:
<h2>a) Speed at the first point</h2>
In this situation wi will use equation (1):
(1)
Finding
:
(3)
(4)
(5)
<h2>
b) Emu's acceleration</h2>
Now we will substitute (5) in equation (2):
(6)
Finding
:
(7) This means the emu is decreasing its speed at a constant rate.
B = magnetic field in the cyclotron = 0.400 T
q = magnitude of charge on a proton = 1.6 x 10⁻¹⁹ C
m = mass of the proton = 1.67 x 10⁻²⁷ kg
f = frequency of revolution of proton in the cyclotron = ?
v = speed of electromagnetic waves = 3 x 10⁸ m/s
λ = wavelength of electromagnetic wave = ?
Frequency of revolution of proton in the cyclotron is given as
f = qB/(2πm)
inserting the values
f = (1.6 x 10⁻¹⁹)(0.400)/(2 (3.14) (1.67 x 10⁻²⁷))
f = 6.1 x 10⁶ Hz
wavelength of electromagnetic wave is given as
λ = v/f
λ = (3 x 10⁸)/(6.1 x 10⁶)
λ = 49.2 m
The focal length of a magnifying glass is the distance between the focal point and optical centre of the magnifying glass.
<h3>Focal length</h3>
The focal length, f is the distance from a lens or mirror to the focal point, F.
This is the distance from a lens or mirror at which parallel light rays will meet for a converging lens or mirror or appear to diverge from for a diverging lens or mirror.
A magnifying glass is a converging lens which produces a enlarged, erect and virtual image when an object is placed between the focal point and optical centre.
A magnifying glass will bring to focus at a point sun rays which can cause the paper to catch fire if it is held in place for long.
This point at which the most concentrated ray of light is shining on the paper, is the focal point for that magnifying glass.
Therefore, the focal length of a magnifying glass is the distance between the focal point and optical centre of the magnifying glass.
Learn more about about focal length at: brainly.com/question/25779311