Answer:
The electrical field in the region between the plates is 10,000 V/m.
Explanation:
Given;
potential difference between the two parallel plates, V = 100 V
distance between the two parallel plates, d = 1 cm = 0.01 m
The electrical field in the region between the plates is given as;
E = V / d
where;
E is the electrical field in the region between the plates
E = (100) / (0.01)
E = 10,000 V/m
Therefore, the electrical field in the region between the plates is 10,000 V/m.
The answer is C since the higher up you go the colder it gets which is why Linda will experience colder climates.
Well this question looks like it makes some assumptions. So assuming that both cars have the same mass and experience the same wind resistance regardless of speed and same internal frictions, then we could say "The car that finishes last has the lowest power". The reason is that for a given race the cars must overcome losses associated with motion. Since they all travel the same distance, the amount of work will be the same for both. This is because work is force times distance. If the force applied is the same in both cases (identical cars with constant wind resistance) and the distance is the same for both (a fair race track) then W=F·d will be the same.
Power, however, is the work done divided by the time over which it is done. So for a slower car, time t will be larger. The power ratio W/t will be smaller for the longer time (slower car).
Provided the projectile is landing at the same elevation as it is launched from, it is 45 degrees